Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Drug Deliv Transl Res ; 14(3): 718-729, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37679600

RESUMEN

Malignant melanoma is a high-grade aggressive skin tumor with an increasing incidence and mortality rates worldwide. Chemotherapeutic drugs such as doxorubicin have limited efficacy against melanoma due to their poor sensitivity, severe side effects, and drug resistance. Recent studies have shown that combinations of immunotherapy and chemotherapy have a synergistic effect in enhancing the anti-tumor effect. Here, we have developed liposomes co-loaded with chlorogenic acid (CA) and doxorubicin (DOX), modified with sialic acid-octadecylamine conjugate (SA-ODA), designated CA-DOX-SAL, that facilitate drug delivery by recognizing Siglec-1 receptor on TAMs. The physicochemical studies revealed the particle size and zeta potential of CA-DOX-SAL as 128.3 ± 0.8 nm and - 4.33 ± 0.50 mV, respectively. In vitro, CA-DOX-SAL demonstrated robust cellular uptake through SA receptor-mediated tumor-associated macrophages (TAM) targeting and exerted greater cytotoxicity on tumor cells. In vivo, targeted liposomes were found to accumulate in the tumor area, leading to an improvement in anti-tumor efficacy. In addition, CA-DOX-SAL effectively inhibited B16F10 melanoma tumor growth by stimulating the transition from tumor-promoting M2-type to anti-tumor M1-type and directly killing tumor cells. Overall, the co-delivery of immunomodulatory CA and chemotherapeutic DOX presents a promising therapeutic strategy to enhance clinical outcomes in the treatment of melanoma.


Asunto(s)
Liposomas , Melanoma , Humanos , Ácido N-Acetilneuramínico , Ácido Clorogénico , Melanoma/tratamiento farmacológico , Doxorrubicina/farmacología , Inmunoterapia , Línea Celular Tumoral
2.
Acta Pharm Sin B ; 13(2): 804-818, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36873172

RESUMEN

Neoadjuvant chemotherapy has become an indispensable weapon against high-risk resectable cancers, which benefits from tumor downstaging. However, the utility of chemotherapeutics alone as a neoadjuvant agent is incapable of generating durable therapeutic benefits to prevent postsurgical tumor metastasis and recurrence. Herein, a tactical nanomissile (TALE), equipped with a guidance system (PD-L1 monoclonal antibody), ammunition (mitoxantrone, Mit), and projectile bodies (tertiary amines modified azobenzene derivatives), is designed as a neoadjuvant chemo-immunotherapy setting, which aims at targeting tumor cells, and fast-releasing Mit owing to the intracellular azoreductase, thereby inducing immunogenic tumor cells death, and forming an in situ tumor vaccine containing damage-associated molecular patterns and multiple tumor antigen epitopes to mobilize the immune system. The formed in situ tumor vaccine can recruit and activate antigen-presenting cells, and ultimately increase the infiltration of CD8+ T cells while reversing the immunosuppression microenvironment. Moreover, this approach provokes a robust systemic immune response and immunological memory, as evidenced by preventing 83.3% of mice from postsurgical metastasis or recurrence in the B16-F10 tumor mouse model. Collectively, our results highlight the potential of TALE as a neoadjuvant chemo-immunotherapy paradigm that can not only debulk tumors but generate a long-term immunosurveillance to maximize the durable benefits of neoadjuvant chemotherapy.

3.
Molecules ; 28(2)2023 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-36677694

RESUMEN

OBJECTIVE: To study the extraction process of agarwood active ingredients (AA) and investigate the safety and effectiveness of AA in the treatment of insomnia rats by nasal administration. METHOD: A ß-cyclodextrin (ß-CD) inclusion compound (a-ß-CD) was prepared from agarwood essential oil (AEO), and the preparation process was optimized and characterized. The safety of AA in nasal mucosa was evaluated through Bufo gargarizans maxillary mucosa and rat nasal mucosa models. Insomnia animal models were replicated by injecting p-chlorophenylalanine (PCPA), conducting behavioral tests, and detecting the expression levels of monoamine neurotransmitters (NE and 5-HT) and amino acids (GABA/Glu) in the rat hypothalamus. RESULTS: The optimum inclusion process conditions of ß-CD were as follows: the feeding ratio was 0.35:1.40 (g:g), the inclusion temperature was 45 °C, the inclusion time was 2 h, and the ICY% and IEO% were 53.78 ± 2.33% and 62.51 ± 3.21%, respectively. The inclusion ratio, temperature, and time are the three factors that have significant effects on the ICY% and IEO% of a-ß-CD. AA presented little damage to the nasal mucosa. AA increased the sleep rate, shortened the sleep latency, and prolonged the sleep time of the rats. The behavioral test results showed that AA could ameliorate depression in insomnia rats to a certain extent. The effect on the expression of monoamine neurotransmitters and amino acids in the hypothalamus of rats showed that AA could significantly reduce NE levels and increase the 5-HT level and GABA/Glu ratio in the hypothalamus of insomnia rats. CONCLUSION: The preparation of a-ß-CD from AEO can reduce its irritation, improve its stability, increase its curative effect, and facilitate its storage and transport. AA have certain therapeutic effects on insomnia. The mechanism of their effect on rat sleep may involve regulating the expression levels of monoamine neurotransmitters and amino acids in the hypothalamus.


Asunto(s)
Ciclodextrinas , Aceites Volátiles , Trastornos del Inicio y del Mantenimiento del Sueño , Animales , Ratas , Fenclonina/farmacología , Ácido gamma-Aminobutírico/metabolismo , Neurotransmisores , Aceites Volátiles/farmacología , Aceites Volátiles/química , Serotonina , Trastornos del Inicio y del Mantenimiento del Sueño/inducido químicamente , Trastornos del Inicio y del Mantenimiento del Sueño/tratamiento farmacológico
4.
Mater Today Bio ; 17: 100487, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36388461

RESUMEN

The integration of 3D bioprinting and stem cells is of great promise in facilitating the reconstruction of cranial defects. However, the effectiveness of the scaffolds has been hampered by the limited cell behavior and functions. Herein, a therapeutic cell-laden hydrogel for bone regeneration is therefore developed through the design of a void-forming hydrogel. This hydrogel is prepared by digital light processing (DLP)-based bioprinting of the bone marrow stem cells (BMSCs) mixed with gelatin methacrylate (GelMA)/dextran emulsion. The 3D-bioprinted hydrogel can not only promote the proliferation, migration, and spreading of the encapsulated BMSCs, but also stimulate the YAP signal pathway, thus leading to the enhanced osteogenic differentiation of BMSCs. In addition, the in vivo therapeutic assessments reveal that the void-forming hydrogel shows great potential for BMSCs delivery and can significantly promote bone regeneration. These findings suggest that the unique 3D-bioprinted void-forming hydrogels are promising candidates for applications in bone regeneration.

5.
Plants (Basel) ; 11(21)2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-36365281

RESUMEN

Interpreting leaf nitrogen (N) allocation is essential to understanding leaf N cycling and the economy of plant adaptation to environmental fluctuations, yet the way these mechanisms shift in various varieties under high temperatures remains unclear. Here, eight varieties of pecan (Carya illinoinensis [Wangenh.] K. Koch), Mahan, YLC10, YLC12, YLC13, YLC29, YLC35, YLJ042, and YLJ5, were compared to investigate the effects of high temperatures on leaf N, photosynthesis, N allocation, osmolytes, and lipid peroxidation and their interrelations. Results showed that YLC35 had a higher maximum net photosynthetic rate (Pmax) and photosynthetic N-use efficiency (PNUE), while YLC29 had higher N content per area (Na) and lower PNUE. YLC35, with lower malondialdehyde (MDA), had the highest proportions of N allocation in rubisco (Pr), bioenergetics (Pb), and photosynthetic apparatus (Pp), while YLC29, with the highest MDA, had the lowest Pr, Pb, and Pp, implying more leaf N allocated to the photosynthetic apparatus for boosting PNUE or to non-photosynthetic apparatus for alleviating damage. Structural equation modeling (SEM) demonstrated that N allocation was affected negatively by leaf N and positively by photosynthesis, and their combination indirectly affected lipid peroxidation through the reverse regulation of N allocation. Our results indicate that different varieties of pecan employ different resource-utilization strategies and growth-defense tradeoffs for homeostatic balance under high temperatures.

6.
Exp Cell Res ; 419(2): 113324, 2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-36002046

RESUMEN

Osteogenic differentiation of periodontal ligament stem cells (PDLSCs) is limited in hypoxia, and HIF-1α is key to the response to hypoxia. However, its mechanisms remain largely unknown. This study discovered an osteogenesis-related gene sensitive to hypoxia in PDLSCs, and investigated the molecular mechanisms between HIF-1α and the gene. NOG, a gene that negatively regulates osteogenesis, was discovered by RNA-seq. Under normoxic conditions, HIF-1α overexpression led to enhanced expression of NOG/Noggin and inhibited the expression of osteogenesis-related genes, while inhibition of HIF-1α reversed this effect. The expression of HIF-1α, NOG/Noggin and the osteogenesis-related genes were detected by qRT-PCR or Western blot. Mechanistically, we verified that HIF-1α binds to the hypoxia response element (-1505 to -1502) in the promotor of NOG to enhance secretion of Noggin by chromatin immunoprecipitation and a dual-luciferase reporter assay. IHC staining findings in an animal model verified that Noggin-associated osteogenic differentiation was inhibited in hypoxia. NOG displayed a concordant relationship with HIF-1α, and secreted more with increasing of HIF-1α. Hypoxia stabilized HIF-1α, which bound to the HRE (-1505 to -1502) of the NOG promotor to enhance NOG transcription resulted in inhibiting osteogenic differentiation of PDLSCs. This study offers a promising therapy for periodontitis.


Asunto(s)
Osteogénesis , Ligamento Periodontal , Animales , Diferenciación Celular/genética , Células Cultivadas , Hipoxia/metabolismo , Osteogénesis/genética , Ligamento Periodontal/metabolismo , Células Madre
7.
Adv Healthc Mater ; 11(12): e2102810, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35194975

RESUMEN

A challenge for bioprinting tissue constructs is enabling the viability and functionality of encapsulated cells. Rationally designed bioink that can create appropriate biophysical cues shows great promise for overcoming such challenges. Here, a nanoparticle-stabilized emulsion bioink for direct fabrication of porous tissue constructs by digital light processing based 3D bioprinting technology is introduced. The emulsion bioink is integrated by the mixture of aqueous dextran microdroplets and gelatin methacryloyl solution and is further rendered stable by ß-lactoglobulin nanoparticles. After bioprinting, the printed tissue constructs create the macroporous structure via removal of dextran, thereby providing favorable biophysical cues to promote the viability, proliferation, and spreading of the encapsulated cells. Moreover, a trachea-shaped construct containing chondrocytes is bioprinted and implanted in vivo. The results demonstrate that the generated macroporous construct is of benefit to cartilage tissue rebuilding. This work offers an advanced bioink for the fabrication of living tissue constructs by activating the cell behaviors and functions in situ and can lead to the development of 3D bioprinting.


Asunto(s)
Bioimpresión , Nanopartículas , Bioimpresión/métodos , Dextranos , Emulsiones , Gelatina , Hidrogeles/química , Metacrilatos , Porosidad , Impresión Tridimensional , Ingeniería de Tejidos/métodos , Andamios del Tejido/química
8.
Drug Deliv ; 28(1): 1849-1860, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34515617

RESUMEN

Melanoma is one of the most common malignant tumors. The anti-PD-1 antibody is used for the treatment of metastatic melanoma. Treatment success is only 35-40% and a range of immune-related adverse reactions can occur. Combination of anti-PD1 antibody therapy with other oncology therapies has been attempted. Herein, we assessed whether chlorogenic acid liposomes modified with sialic acid (CA-SAL) combined with anti-PD1 antibody treatment was efficacious as immunotherapy for melanoma. CA-SAL liposomes were prepared and characterized. In a mouse model of B16F10 tumor, mice were treated with an anti-PD1 antibody, CA-SAL, or combination of CA-SAL + anti-PD1 antibody, and compared with no treatment controls. The tumor inhibition rate, tumor-associated macrophages (TAMs) phenotype, T-cell activity, and safety were investigated. We observed a significant decrease in the proportion of M2-TAMs and CD4+Fop3+ T cells, while there was a significant increase in the proportion of M1-TAMs and CD8+ T cells, and in the activity of T cells, and thus in the tumor inhibition rate. No significant toxicity was observed in major organs. CA-SAL and anti-PD1 Ab combination therapy presented synergistic anti-tumor activity, which enhanced the efficacy of the PD-1 checkpoint blocker in a mouse model of melanoma. In summary, combination immunotherapy of CA-SAL and anti-PD1 Ab has broad prospects in improving the therapeutic effect of melanoma, and may provide a new strategy for clinical treatment.


Asunto(s)
Ácido Clorogénico/farmacología , Inhibidores de Puntos de Control Inmunológico/farmacología , Liposomas/química , Melanoma/patología , Ácido N-Acetilneuramínico/farmacología , Animales , Supervivencia Celular , Ácido Clorogénico/administración & dosificación , Ácido Clorogénico/farmacocinética , Portadores de Fármacos/química , Combinación de Medicamentos , Inhibidores de Puntos de Control Inmunológico/administración & dosificación , Inhibidores de Puntos de Control Inmunológico/farmacocinética , Masculino , Ratones , Ratones Endogámicos C57BL , Ácido N-Acetilneuramínico/administración & dosificación , Ácido N-Acetilneuramínico/farmacocinética , Fenotipo , Células RAW 264.7 , Linfocitos T/efectos de los fármacos , Macrófagos Asociados a Tumores/efectos de los fármacos
9.
Theranostics ; 11(14): 6936-6949, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34093863

RESUMEN

Substantial progress has been made with cancer immunotherapeutic strategies in recent years, most of which mainly rely on enhancing the T cell response. However, sufficient tumor antigen information often cannot be presented to T cells, resulting in a failed effector T cell response. The innate immune system can effectively recognize tumor antigens and then initiate an adaptive immune response. Here, we developed a spontaneous multifunctional hydrogel (NOCC-CpG/OX-M, Ncom Gel) vaccine to amplify the innate immune response and harness innate immunity to launch and maintain a powerful adaptive immune response. Methods: Ncom Gel was formed by a Schiff base reaction between CpG-modified carboxymethyl chitosan (NOCC-CpG) and partially oxidized mannan (OX-M). The effects of the Ncom Gel vaccine on DCs and macrophages in vitro and antigen-specific humoral immunity and cellular immunity in vivo were studied. Furthermore, the antitumor immune response of the Ncom Gel vaccine and its effect on the tumor microenvironment were evaluated. Results: The Ncom Gel vaccine enhanced antigen presentation to T cells by facilitating DC uptake and maturation and inducing macrophages to a proinflammatory subtype, further leading to a T cell-mediated adaptive immune response. Moreover, the innate immune response could be amplified via the promotion of antigen-specific antibody production. The Ncom Gel vaccine reversed the tumor immune microenvironment to an inflamed phenotype and showed a significant antitumor response in a melanoma model. Conclusions: Our research implies the potential application of injectable hydrogels as a platform for tumor immunotherapy. The strategy also opens up a new avenue for multilayered cancer immunotherapy.


Asunto(s)
Inmunidad Adaptativa/efectos de los fármacos , Vacunas contra el Cáncer/inmunología , Hidrogeles/química , Hidrogeles/farmacología , Inmunidad Innata/efectos de los fármacos , Inmunoterapia/métodos , Melanoma/inmunología , Microambiente Tumoral/efectos de los fármacos , Inmunidad Adaptativa/inmunología , Animales , Línea Celular Tumoral , Quitosano/química , Células Dendríticas/efectos de los fármacos , Células Dendríticas/inmunología , Femenino , Hidrogeles/síntesis química , Inflamación/inmunología , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Mananos/química , Melanoma/terapia , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica de Rastreo , Ovalbúmina/inmunología , Reología , Bases de Schiff/química , Linfocitos T/inmunología , Microambiente Tumoral/inmunología
10.
J Cancer ; 12(1): 54-64, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33391402

RESUMEN

Tumor-associated macrophages (TAMs) occupy an important position in the tumor microenvironment (TME), they are a highly plastic heterogeneous population with complex effects on tumorigenesis and development. TAMs secrete a variety of cytokines, chemokines, and proteases, which promote the remodeling of extracellular matrix, tumor cell growth and metastasis, tumor vessel and lymphangiogenesis, and immunosuppression. TAMs with different phenotypes have different effects on tumor proliferation and metastasis. TAMs act a pivotal part in occurrence and development of tumors, and are very attractive target to inhibit tumor growth and metastasis in tumor immunotherapy. This article reviews the interrelationship between TAMs and tumor microenvironment and its related applications in tumor therapy.

11.
Adv Healthc Mater ; 10(7): e2002080, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33336537

RESUMEN

Neoantigen-based immunotherapy is a promising treatment option for many types of cancer. However, its efficacy and abscopal effect are limited by impotent neoantigens, high treatment costs, and complications due to action of adjuvants. Here, the design and synthesis of nanovaccines are reported, based on self-adjuvanted, polymer nanoparticles with in vivo neoantigen-harvesting and molecular activating capabilities. These nanovaccines inhibit tumor growth significantly and prolong the survival of tumor-bearing mice in both colon carcinoma 26 (CT26) and B16-F10 tumor models. Mechanistic studies suggest that as-synthesized nanovaccines can promote dendritic cell maturation and accumulation expeditiously in lymph nodes, leading to the expansion of cytotoxic CD8+ T cells. Moreover, these nanovaccines elicit abscopal effects in CT26 and B16-F10 tumors without the need for adjuvants or immune checkpoint inhibitors. Combined with an anti-PD-L1 antibody, nanovaccines can evoke robust, long-term memory immune response, as evidenced by tumor growth inhibition and high survival rates (∼ 67%) over 90 days. These results highlight the potential of using self-adjuvanted nanovaccines as a simple, safe, and affordable strategy to boost neoantigen-based cancer immunotherapy.


Asunto(s)
Nanopartículas , Neoplasias , Adyuvantes Inmunológicos , Animales , Linfocitos T CD8-positivos , Inmunoterapia , Ratones , Neoplasias/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...