Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PLoS Genet ; 11(3): e1005143, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25822663

RESUMEN

Lipid remodeling is crucial for hypoxic tolerance in animals, whilst little is known about the hypoxia-induced lipid dynamics in plants. Here we performed a mass spectrometry-based analysis to survey the lipid profiles of Arabidopsis rosettes under various hypoxic conditions. We observed that hypoxia caused a significant increase in total amounts of phosphatidylserine, phosphatidic acid and oxidized lipids, but a decrease in phosphatidylcholine (PC) and phosphatidylethanolamine (PE). Particularly, significant gains in the polyunsaturated species of PC, PE and phosphatidylinositol, and losses in their saturated and mono-unsaturated species were evident during hypoxia. Moreover, hypoxia led to a remarkable elevation of ceramides and hydroxyceramides. Disruption of ceramide synthases LOH1, LOH2 and LOH3 enhanced plant sensitivity to dark submergence, but displayed more resistance to submergence under light than wild type. Consistently, levels of unsaturated very-long-chain (VLC) ceramide species (22:1, 24:1 and 26:1) predominantly declined in the loh1, loh2 and loh3 mutants under dark submergence. In contrast, significant reduction of VLC ceramides in the loh1-1 loh3-1 knockdown double mutant and lacking of VLC unsaturated ceramides in the ads2 mutants impaired plant tolerance to both dark and light submergences. Evidence that C24:1-ceramide interacted with recombinant CTR1 protein and inhibited its kinase activity in vitro, enhanced ER-to-nucleus translocation of EIN2-GFP and stabilization of EIN3-GFP in vivo, suggests a role of ceramides in modulating CTR1-mediated ethylene signaling. The dark submergence-sensitive phenotypes of loh mutants were rescued by a ctr1-1 mutation. Thus, our findings demonstrate that unsaturation of VLC ceramides is a protective strategy for hypoxic tolerance in Arabidopsis.


Asunto(s)
Ceramidas/genética , Proteínas Quinasas/genética , Plantones/genética , Esfingosina N-Aciltransferasa/genética , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Ceramidas/metabolismo , Etilenos/metabolismo , Hipoxia/genética , Metabolismo de los Lípidos/genética , Liposomas/metabolismo , Ácidos Fosfatidicos/metabolismo , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/metabolismo , Fosfatidilserinas/genética , Fosfatidilserinas/metabolismo , Fotoperiodo , Proteínas Quinasas/metabolismo , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Transducción de Señal
2.
Plant J ; 81(1): 53-67, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25284079

RESUMEN

In Arabidopsis thaliana, acyl-CoA-binding proteins (ACBPs) are encoded by a family of six genes (ACBP1 to ACBP6), and are essential for diverse cellular activities. Recent investigations suggest that the membrane-anchored ACBPs are involved in oxygen sensing by sequestration of group VII ethylene-responsive factors under normoxia. Here, we demonstrate the involvement of Arabidopsis ACBP3 in hypoxic tolerance. ACBP3 transcription was remarkably induced following submergence under both dark (DS) and light (LS) conditions. ACBP3-overexpressors (ACBP3-OEs) showed hypersensitivity to DS, LS and ethanolic stresses, with reduced transcription of hypoxia-responsive genes as well as accumulation of hydrogen peroxide in the rosettes. In contrast, suppression of ACBP3 in ACBP3-KOs enhanced plant tolerance to DS, LS and ethanol treatments. By analyses of double combinations of OE-1 with npr1-5, coi1-2, ein3-1 as well as ctr1-1 mutants, we observed that the attenuated hypoxic tolerance in ACBP3-OEs was dependent on NPR1- and CTR1-mediated signaling pathways. Lipid profiling revealed that both the total amounts and very-long-chain species of phosphatidylserine (C42:2- and C42:3-PS) and glucosylinositolphosphorylceramides (C22:0-, C22:1-, C24:0-, C24:1-, and C26:1-GIPC) were significantly lower in ACBP3-OEs but increased in ACBP3-KOs upon LS exposure. By microscale thermophoresis analysis, the recombinant ACBP3 protein bound VLC acyl-CoA esters with high affinities in vitro. Further, a knockout mutant of MYB30, a master regulator of very-long-chain fatty acid (VLCFA) biosynthesis, exhibited enhanced sensitivities to LS and ethanolic stresses, phenotypes that were ameliorated by ACBP3-RNAi. Taken together, these findings suggest that Arabidopsis ACBP3 participates in plant response to hypoxia by modulating VLCFA metabolism.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/metabolismo , Proteínas Portadoras/fisiología , Hipoxia de la Célula , Ácidos Grasos/metabolismo , Estrés Fisiológico , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Ácidos Grasos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA