Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.195
Filtrar
1.
Heliyon ; 10(9): e30505, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38726194

RESUMEN

FERMT2 has been identified as a participant in integrin-linked kinase signaling pathways, influencing epithelial-mesenchymal transition and thereby affecting tumor initiation, progression, and invasion. While the character of FERMT2 in the tumor microenvironment (TME) as well as its implications for immunotherapy remain unclear. Thus, we conducted a comprehensive analysis to assess the prognostic significance of FERMT2 using Kaplan-Meier analysis. In addition, we employed enrichment analysis to uncover potential underlying molecular mechanisms. Using "Immunedeconv" package, we evaluated the immune characteristics of FERMT2 within TME. Furthermore, we determined the expression levels of FERMT2 in various cell types within TME, based on single-cell sequencing data. To confirm the co-expression of FERMT2 and markers of cancer-associated fibroblasts (CAFs), we performed multiplex immunofluorescence staining on tissue paraffin sections across various cancer types. Our analysis disclosed a significant correlation between elevated FERMT2 expression and unfavorable prognosis in specific cancer types. Furthermore, we identified a strong correlation between FERMT2 expression and diverse immune-related factors, including immune checkpoint molecules, immune cell infiltration, microsatellite instability (MSI), and tumor mutational burden (TMB). Additionally, there was a significant correlation between FERMT2 expression and immune-related pathways, particularly those associated with activating, migrating, and promoting the growth of fibroblasts in diverse cancer types. Interestingly, we observed consistent co-expression of FERMT2 in both malignant tumor cells and stromal cells, particularly within CAFs. Notably, our findings also indicated that FERMT2, in particular, exhibited elevated expression levels within tumor tissues and co-expressed with α-SMA in CAFs based on the multiplex immunofluorescence staining results.

2.
EMBO J ; 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719994

RESUMEN

Double-strand breaks (DSBs) are the most lethal form of DNA damage. Transcriptional activity at DSBs, as well as transcriptional repression around DSBs, are both required for efficient DNA repair. The chromatin landscape defines and coordinates these two opposing events. However, how the open and condensed chromatin architecture is regulated remains unclear. Here, we show that the GATAD2B-NuRD complex associates with DSBs in a transcription- and DNA:RNA hybrid-dependent manner, to promote histone deacetylation and chromatin condensation. This activity establishes a spatio-temporal boundary between open and closed chromatin, which is necessary for the correct termination of DNA end resection. The lack of the GATAD2B-NuRD complex leads to chromatin hyperrelaxation and extended DNA end resection, resulting in homologous recombination (HR) repair failure. Our results suggest that the GATAD2B-NuRD complex is a key coordinator of the dynamic interplay between transcription and the chromatin landscape, underscoring its biological significance in the RNA-dependent DNA damage response.

3.
Angew Chem Int Ed Engl ; : e202406110, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38711195

RESUMEN

The ability to finely tune/balance the structure and rigidity of enzymes to realize both high enzymatic activity and long-term stability is highly desired but highly challenging. In this work, we propose a new concept of silica-enzyme, referred to as "silicazyme", where solid inorganic silica was controlled hybridization with fragile enzyme under moderate condition at single-enzyme level, realizing simultaneous structure augmentation, long-term stability, and high enzymatic activity preservation. A multivariate silicification approach was utilized and occurred around individual enzymes to allow conformal coating. To realize a high activity-stability trade-off the structure flexibility/rigidity of silicazyme was optimized by a component-adjustment-ternary (CAT) plot method. Moreover, the multivariate organosilica frameworks bring great advantages including surface microenvironment adjustability, reversible modification capability, and functional extensibility through the rich chemistry of silica. Overall silicazymes represent a new class of enzymes that promise to broaden their utilization in catalysis, separations, and nanomedicine.

4.
MedComm (2020) ; 5(5): e559, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38721006

RESUMEN

RNA modification, especially RNA methylation, is a critical posttranscriptional process influencing cellular functions and disease progression, accounting for over 60% of all RNA modifications. It plays a significant role in RNA metabolism, affecting RNA processing, stability, and translation, thereby modulating gene expression and cell functions essential for proliferation, survival, and metastasis. Increasing studies have revealed the disruption in RNA metabolism mediated by RNA methylation has been implicated in various aspects of cancer progression, particularly in metabolic reprogramming and immunity. This disruption of RNA methylation has profound implications for tumor growth, metastasis, and therapy response. Herein, we elucidate the fundamental characteristics of RNA methylation and their impact on RNA metabolism and gene expression. We highlight the intricate relationship between RNA methylation, cancer metabolic reprogramming, and immunity, using the well-characterized phenomenon of cancer metabolic reprogramming as a framework to discuss RNA methylation's specific roles and mechanisms in cancer progression. Furthermore, we explore the potential of targeting RNA methylation regulators as a novel approach for cancer therapy. By underscoring the complex mechanisms by which RNA methylation contributes to cancer progression, this review provides a foundation for developing new prognostic markers and therapeutic strategies aimed at modulating RNA methylation in cancer treatment.

5.
Environ Pollut ; 351: 124052, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38703976

RESUMEN

Long-term exposure to fine particulate matter (PM2.5) is associated with an increased total mortality. However, the association of PM2.5 with mortality in people living with human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS, PLWHA) and the relationship between its constituents and adverse outcomes remain unknown. In this cohort study, 28,140 PLWHA were recruited from the HIV/AIDS Comprehensive Response Information Management System of the Hubei Provincial Centre for Disease Control and Prevention in China between 2001 and 2020. The annual PM2.5 chemical composition data, including sulfate (SO42-), nitrate (NO3-), ammonium (NH4+), black carbon (BC), and organic matter (OM), was extracted from the Tracking Air Pollution (TAP) dataset in China. A Cox proportional hazard model with time-varying exposure and time-to-event quantile-based generalized (g) computation was used to assess the associations between PM2.5 chemical constituents, and mortality in PLWHA. A multivariate Cox proportional hazard model estimated an excess hazard ratio (eHR) of 0.32% [95% confidence interval (CI): (0.01%, 0.64%)] for AIDS-related death (ARD), associated with 1 µg/m3 rise in PM2.5 exposure. An increase of 1 µg/m3 in NH4+ was associated with 5.13% [95% CI: (2.89%, 7.43%)] and 2.97% [95% CI: (1.52%, 4.44%)] increase in the risk of ARD and all-cause deaths (ACD), respectively. When estimated using survival-based quantile g-computation, the eHR for ARD with a joint change in a decile increase in all five components was 6.10% [95% CI: 3.77%, 8.48%)]. Long-term exposure to PM2.5 chemical composition, particularly NH4+ increased the risk of death in PLWHA. This study provides epidemiological evidence that SO42- and NH4+ increased the risk of ARD and that NH4+ increased the risk of ACD in PLWHA. Multi-constituent analyses further suggested that NH4+ may be a key component in increasing the risk of premature death in patients with HIV/AIDS. Individuals aged ≥65 with HIV/AIDS are more vulnerable to SO42-, and consequent ACD.

6.
Artículo en Inglés | MEDLINE | ID: mdl-38716694

RESUMEN

Phototherapy, represented by photodynamic therapy (PDT) and photothermal therapy (PTT), has great potential in tumor treatment. However, the presence of antioxidant glutathione (GSH) and the heat shock proteins (HSPs) expression caused by high temperature can weaken the effects of PDT and PTT. Here, a multifunctional nanocomplex BT&GA@CL is constructed to realize enhanced synergistic PDT/PTT. Cinnamaldehyde liposomes (CLs) formed by cinnamaldehyde dimer self-assembly were loaded with in gambogic acid (GA) and an aggregation-induced emission molecule BT to obtain BT&GA@CL. As a drug carrier, CL can consume glutathione (GSH) and release drugs responsively. The released BT aggregates can simultaneously act as both a photothermal agent and photosensitizer to achieve PDT and PTT under 660 nm laser irradiation. Specifically, GA as an HSP90 inhibitor can attenuate PTT-induced HSP90 protein expression, thereby weakening the tolerance of tumor cells to high temperatures and enhancing PTT. Such a multifunctional nanocomplex simultaneously modulates the content of GSH and HSP90 in tumor cells, thus enhancing both PDT and PTT, ultimately achieving the goal of efficient combined tumor suppression.

7.
Adv Healthc Mater ; : e2400760, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38703026

RESUMEN

Near-infrared-II (NIR-II) fluorescence imaging is pivotal in biomedical research. Organic probes exhibit high potential in clinical translation, due to advantages such as precise structure design, low toxicity, and post-modifications convenience. In related preparation, enhancement of NIR-II tail emission from NIR-I dyes is an efficient method. In particular, the promotion of twisted intramolecular charge transfer (TICT) of relevant NIR-I dyes is a convenient protocol. However, present TICT-type probes still show disadvantages in relatively low emission, large particle sizes, or limited choice of NIR-I dyes, etc. Herein, the synthesis of stable small-sized polymer NIR-II fluoroprobes (e.g., 7.2 nm), integrating TICT and Förster resonance energy transfer process to synergistically enhance the NIR-II emission is reported. Strong enhanced emissions can be obtained from various NIR-I dyes and lanthanide elements (e.g., twelvefold at 1250 nm from Nd-DTPA/IR-808 sample). The fluorophore provides high-resolution angiography, with high-contrast imaging on middle cerebral artery occlusion model mice for distinguishing occlusion. The fluorophore can be rapidly excreted from the kidney (urine ≈65% within 4 h) in normal mice and exhibits long-term renal retention on acute kidney injury mice, showing potential applications in the prognosis of kidney diseases. This development provides an effective strategy to design and synthesize effective NIR-II fluoroprobes.

8.
Theor Appl Genet ; 137(5): 116, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698276

RESUMEN

KEY MESSAGE: An adult plant gene for resistance to stripe rust was narrowed down to the proximal one-third of the 2NvS segment translocated from Aegilops ventricosa to wheat chromosome arm 2AS, and based on the gene expression analysis, two candidate genes were identified showing a stronger response at the adult plant stage compared to the seedling stage. The 2NvS translocation from Aegilops ventricosa, known for its resistance to various diseases, has been pivotal in global wheat breeding for more than three decades. Here, we identified an adult plant resistance (APR) gene in the 2NvS segment in wheat line K13-868. Through fine mapping in a segregating near-isogenic line (NIL) derived population of 6389 plants, the candidate region for the APR gene was narrowed down to between 19.36 Mb and 33 Mb in the Jagger reference genome. Transcriptome analysis in NILs strongly suggested that this APR gene conferred resistance to stripe rust by triggering plant innate immune responses. Based on the gene expression analysis, two disease resistance-associated genes within the candidate region, TraesJAG2A03G00588940 and TraesJAG2A03G00590140, exhibited a stronger response to Puccinia striiformis f. sp. tritici (Pst) infection at the adult plant stage than at the seedling stage, indicating that they could be potential candidates for the resistance gene. Additionally, we developed a co-dominant InDel marker, InDel_31.05, for detecting this APR gene. Applying this marker showed that over one-half of the wheat varieties approved in 2021 and 2022 in Sichuan province, China, carry this gene. Agronomic trait evaluation of NILs indicated that the 2NvS segment effectively mitigated the negative effects of stripe rust on yield without affecting other important agronomic traits. This study provided valuable insights for cloning and breeding through the utilization of the APR gene present in the 2NvS segment.


Asunto(s)
Aegilops , Basidiomycota , Mapeo Cromosómico , Resistencia a la Enfermedad , Perfilación de la Expresión Génica , Genes de Plantas , Enfermedades de las Plantas , Triticum , Triticum/genética , Triticum/microbiología , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Basidiomycota/patogenicidad , Basidiomycota/fisiología , Aegilops/genética , Aegilops/microbiología , Fitomejoramiento , Transcriptoma , Cromosomas de las Plantas/genética , Puccinia/patogenicidad , Puccinia/fisiología , Regulación de la Expresión Génica de las Plantas
9.
Artículo en Inglés | MEDLINE | ID: mdl-38698745

RESUMEN

INTRODUCTION: At present, cyclosporine (CsA) is the first-line treatment for Pure Red Cell Aplasia (PRCA), but CsA administration can be associated with a number of side effects due to its high toxicity. Therefore, it is urgent to explore a safe and effective treatment for elderly patients who cannot be treated with conventional doses of CsA, especially those with multiple complications. Allogeneic Stem Cell Transplantation (ASCT) for PRCA is a promising treatment, but reports of using umbilical cord blood (UCB) are very rare. CASE PRESENTATION: In this report, UCB and umbilical cord mesenchymal stem cells (UC-MSCs) combined with low-dose CsA (1-3mg/kg/d) were used to treat 3 elderly patients who were diagnosed with PRCA combined with multiple complications in heart, lung, and renal. The treatments were successful without complications, and 12 months after stem cell infusion, the blood tests of the patients came normal. Moreover, the function of the liver, heart, and kidney continued to be stable. CONCLUSION: This report provides an effective regimen of using UCB and UC-MSCs combined with low-dose CsA (1-3 mg/kg/d) to treat PRCA, especially for elderly patients with multiple complications who cannot use the conventional dosage.

10.
Front Oncol ; 14: 1393650, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38737904

RESUMEN

Objectives: To investigate the role of MRI measurements of peri-prostatic adipose tissue (PPAT) in predicting bone metastasis (BM) in patients with newly diagnosed prostate cancer (PCa). Methods: We performed a retrospective study on 156 patients newly diagnosed with PCa by prostate biopsy between October 2010 and November 2022. Clinicopathologic characteristics were collected. Measurements including PPAT volume and prostate volume were calculated by MRI, and the normalized PPAT (PPAT volume/prostate volume) was computed. Independent predictors of BM were determined by univariate and multivariate logistic regression analysis, and a new nomogram was developed based on the predictors. Receiver operating characteristic (ROC) curves were used to estimate predictive performance. Results: PPAT and normalized PPAT were associated with BM (P<0.001). Normalized PPAT positively correlated with clinical T stage(cT), clinical N stage(cN), and Grading Groups(P<0.05). The results of ROC curves indicated that PPAT and normalized PPAT had promising predictive value for BM with the AUC of 0.684 and 0.775 respectively. Univariate and multivariate analysis revealed that high normalized PPAT, cN, and alkaline phosphatase(ALP) were independently predictors of BM. The nomogram was developed and the concordance index(C-index) was 0.856. Conclusions: Normalized PPAT is an independent predictor for BM among with cN, and ALP. Normalized PPAT may help predict BM in patients with newly diagnosed prostate cancer, thus providing adjunctive information for BM risk stratification and bone scan selection.

11.
Artículo en Inglés | MEDLINE | ID: mdl-38740493

RESUMEN

Erdafitinib, a selective and potent oral pan-FGFR inhibitor, is metabolized mainly through CYP2C9 and CYP3A4 enzymes. This phase 1, open-label, single-sequence, drug-drug interaction study evaluated the pharmacokinetics, safety, and tolerability of a single oral dose of erdafitinib alone and when co-administered with steady state oral carbamazepine, a dual inducer of CYP3A4 and CYP2C9, in 13 healthy adult participants (NCT04330248). Compared with erdafitinib administration alone, carbamazepine co-administration decreased total and free maximum plasma concentrations of erdafitinib (Cmax) by 35% (95% CI 30%-39%) and 22% (95% CI 17%-27%), respectively. The areas under the concentration-time curve over the time interval from 0 to 168 hours, to the last quantifiable data point, and to time infinity (AUC168h, AUClast, AUCinf), were markedly decreased for both total erdafitinib (56%-62%) and free erdafitinib (48%-55%). The safety profile of erdafitinib was consistent with previous clinical studies in healthy participants, with no new safety concerns when administered with or without carbamazepine. Co-administration with carbamazepine may reduce the activity of erdafitinib due to reduced exposure. Concomitant use of strong CYP3A4 inducers with erdafitinib should be avoided.

12.
Neurochem Int ; : 105759, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38735393

RESUMEN

BACKGROUND: Exosomes generated from adipose-derived mesenchymal stem cells (Exos), and in particular hypoxia-pretreated ADSCs (HExos), possess therapeutic properties that promote spinal cord repair following spinal cord injury (SCI). Nevertheless, the regulatory mechanisms through which HExos exert their effects remain unclear. METHODS: Here, next-generation sequencing (NGS) was utilized to examine abnormal circRNA expression comparing HExos to Exos. Bioinformatics analysis and RNA pulldown assays together with luciferase reporter assays were applied to determine interactions among miRNAs, mRNAs and circRNAs. ELISA and immunofluorescence staining were used to examine inflammatory cytokine levels, apoptosis and ROS deposition in LPS-treated HT-22 cells, respectively. The therapeutic effects of Exos and HExos on a mouse model of SCI were analyzed by immunohistochemistry and immunofluorescence staining. RESULTS: Our findings confirmed that HExos have more significant therapeutic influences on decreasing ROS and inflammatory cytokine levels post-SCI than Exos. NGS revealed that circ-Wdfy3 expression levels were significantly higher in HExos than Exos. Downregulation of circ-Wdfy3 led to a decrease in HExo-induced therapeutic effects on spinal cord repair post-SCI, indicating that circ-Wdfy3 has a critical role in the regulation of HExo-mediated protection against SCI. Our bioinformatics, RNA pulldown and luciferase reporter data demonstrated that GPX4 and miR-423-3p were downstream targets of circ-Wdfy3. GPX4 downregulation or miR-423-3p overexpression reversed the protective effects of circ-Wdfy3 on LPS-treated HT-22 cells. Furthermore, overexpression of circ-Wdfy3 led to an in increase in the Exo-induced therapeutic effects on spinal cord repair post-SCI through the inhibition of ferroptosis. CONCLUSIONS: circ-WDfy3-overexpressing Exos promote spinal cord repair post-SCI through mediation of ferroptosis via the miR-138-5p/GPX4 pathway.

13.
Aging (Albany NY) ; 16(8): 7153-7173, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38643459

RESUMEN

Application of retinol (Vitamin A, VA) in skincare is limited for instability, poor water solubility, and skin intolerance that combats skin aging. We employed computer-aided virtual screening and cell experiments with transcriptomics, thereby unveiling the comprehensive gene expression and regulation pathway of photoaging HaCaT cell treated with ferulic acid (FA) in synergizing with VA. Through network pharmacology analysis, the combined use of VA and FA exhibited highly correlated cross-targets with skin aging acting on EGFR, PTPN1, ESR2, GSK3B, BACE1, PYGL, PTGS2 and APP. The indicators of oxidative stress, such as SOD, GSH, MDA, CAT and ROS in HaCaT cells after co-administration, were significantly improved from those in photoaging group (p<0.0001). 155 differential expressed genes (DEGs) were specific between groups, while reducing the expression of PTGS2 was identified as an important regulatory factor in photoaging HaCaT cells by VA and FA. Those DEGs of co-administration group focused on oxidative-reduction enzyme activity, skin growth, keratinization, and steroid biosynthesis. Apparently, the co-administration of VA and FA effectively mitigated the process of UVB-induced photoaging by reducing oxidative stress injury, inflammation responses, and regulating cell growth. This synergistic approach significantly slowed down the photoaging progression and improved the applied performance of VA in HaCaT cells.


Asunto(s)
Ácidos Cumáricos , Sinergismo Farmacológico , Células HaCaT , Estrés Oxidativo , Envejecimiento de la Piel , Rayos Ultravioleta , Vitamina A , Humanos , Envejecimiento de la Piel/efectos de los fármacos , Envejecimiento de la Piel/efectos de la radiación , Ácidos Cumáricos/farmacología , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/efectos de la radiación , Rayos Ultravioleta/efectos adversos , Vitamina A/farmacología , Queratinocitos/efectos de los fármacos , Queratinocitos/efectos de la radiación , Queratinocitos/metabolismo , Antioxidantes/farmacología
14.
Neurosurg Rev ; 47(1): 187, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38656561

RESUMEN

BACKGROUND: As one of the most fundamental elements in exposure and decompression, the dissection of arachnoid has been rarely correlated with the surgical results in studies on Microvascular decompression (MVD) procedures for Hemifacial spasm (HFS). MATERIALS AND METHODS: Patients' records of the HFS cases treated with MVD from January 2016 to December 2021 in our center was retrospectively reviewed. The video of the procedures was inspected thoroughly to evaluate the range of dissection of arachnoid. Four areas were defined in order to facilitate the evaluation of the dissection range. The correlation between the arachnoid dissection and the surgical outcomes were analyzed. RESULTS: The arachnoid structures between the nineth cranial nerve and the seventh, eighth cranial nerves were dissected in all cases, other areas were entered based on different consideration. The rate of neurological complications of the extended dissection pattern group was higher than that of the standard pattern group (P < 0.05). The procedures in which the arachnoid structure above the vestibulocochlear nerve was dissected, led to more neurological complications (P < 0.05). CONCLUSION: Thorough dissection as an initial aim for all cases was not recommended in MVD for HFS, arachnoid dissection should be tailored to achieving safety and effectiveness during the procedure.


Asunto(s)
Aracnoides , Espasmo Hemifacial , Cirugía para Descompresión Microvascular , Humanos , Espasmo Hemifacial/cirugía , Cirugía para Descompresión Microvascular/métodos , Femenino , Masculino , Persona de Mediana Edad , Aracnoides/cirugía , Resultado del Tratamiento , Adulto , Estudios Retrospectivos , Anciano , Complicaciones Posoperatorias/epidemiología , Disección/métodos
15.
Front Oncol ; 14: 1197424, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38651152

RESUMEN

Introduction: Pancreatic cancer is a highly aggressive malignancy with limited response to chemotherapy. This research aims to compare the effectiveness and safety of regional intra-arterial chemotherapy (RIAC) with conventional systemic chemotherapy in treating advanced stages of pancreatic cancer. Methods: A comprehensive literature review was conducted using databases such as PubMed, Embase, Web of Science, and the Cochrane Library. Studies assessing the comparative outcomes of RIAC and systemic chemotherapy were included. Data extraction and quality evaluation were performed independently by two researchers. Statistical analysis was conducted using STATA16 software, calculating odds ratios (OR), risk differences (RD), and 95% confidence intervals (CI). Results: Eleven studies, comprising a total of 627 patients, were included in the meta-analysis. The findings showed that patients undergoing RIAC had significantly higher rates of partial remission (PR) compared to those receiving systemic chemotherapy (OR = 2.23, 95% CI: 1.57, 3.15, I2= 0%). Additionally, the rate of complications was lower in the RIAC group (OR = 0.45, 95% CI: 0.33, 0.63, I2= 0%). Moreover, patients treated with RIAC had notably longer median survival times. Discussion: The results of this research indicate that RIAC is associated with a higher rate of partial remission, improved clinical benefits, and fewer complications compared to systemic chemotherapy in the management of advanced pancreatic cancer. These findings suggest that RIAC may be a more effective and safer treatment option for patients with advanced stages of pancreatic cancer. Systematic review registration: https://www.crd.york.ac.uk/prospero/, identifier CRD42023404637.

16.
Mil Med Res ; 11(1): 21, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605399

RESUMEN

In recent years, advancements in single-cell and spatial transcriptomics, which are highly regarded developments in the current era, particularly the emerging integration of single-cell and spatiotemporal transcriptomics, have enabled a detailed molecular comprehension of the complex regulation of cell fate. The insights obtained from these methodologies are anticipated to significantly contribute to the development of personalized medicine. Currently, single-cell technology is less frequently utilized for prostate cancer compared with other types of tumors. Starting from the perspective of RNA sequencing technology, this review outlined the significance of single-cell RNA sequencing (scRNA-seq) in prostate cancer research, encompassing preclinical medicine and clinical applications. We summarize the differences between mouse and human prostate cancer as revealed by scRNA-seq studies, as well as a combination of multi-omics methods involving scRNA-seq to highlight the key molecular targets for the diagnosis, treatment, and drug resistance characteristics of prostate cancer. These studies are expected to provide novel insights for the development of immunotherapy and other innovative treatment strategies for castration-resistant prostate cancer. Furthermore, we explore the potential clinical applications stemming from other single-cell technologies in this review, paving the way for future research in precision medicine.


Asunto(s)
Neoplasias de la Próstata , Análisis de Expresión Génica de una Sola Célula , Masculino , Humanos , Animales , Ratones , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/terapia , Inmunoterapia , Próstata , Diferenciación Celular
17.
Biochim Biophys Acta Rev Cancer ; 1879(3): 189101, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38608963

RESUMEN

Extracellular vesicles (EVs) have emerged as a novel cell-free strategy for the treatment of many diseases including cancer as they play important roles in cancer development and progression. Considering their natural capacity to facilitate cell-to-cell communication as well as their high physiochemical stability and biocompatibility, EVs serve as superior delivery systems for a wide range of therapeutic agents, including medicines, nanomaterials, nucleic acids, and proteins. Therefore, EVs-based cancer therapy is of greater interest to researchers. Mounting studies indicate that EVs can be improved in efficiency, specificity, and safety for cancer therapy. However, their heterogeneity of physicochemical properties and functions is not fully understood, hindering the achievement of bioactive EVs with high yield and purity. Herein, we paid more attention to the EVs applications and their significance in cancer therapy.

18.
Asian J Urol ; 11(2): 137-138, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38680583
19.
Angew Chem Int Ed Engl ; : e202404761, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664844

RESUMEN

Ruthenium (Ru) is considered a promising candidate catalyst for alkaline hydroxide oxidation reaction (HOR) due to its hydrogen binding energy (HBE) like that of platinum (Pt) and its much higher oxygenophilicity than that of Pt. However, Ru still suffers from insufficient intrinsic activity and CO resistance, which hinders its widespread use in anion exchange membrane fuel cells (AEMFCs). Here, we report a hybrid catalyst (RuCo)NC+SAs/N-CNT consisting of dilute RuCo alloy nanoparticles and atomically single Ru and Co atoms on N-doped carbon nanotubes The catalyst exhibits a state-of-the-art activity with a high mass activity of 7.35 A mgRu-1. More importantly, when (RuCo)NC+SAs/N-CNT is used as an anode catalyst for AEMFCs, its peak power density reaches 1.98 W cm-2, which is one of the best AEMFCs properties of noble metal-based catalysts at present. Moreover, (RuCo)NC+SAs/N-CNT has superior long-time stability and CO resistance. The experimental and density functional theory (DFT) results demonstrate that the dilute alloying and monodecentralization of the exotic element Co greatly modulates the electronic structure of the host element Ru, thus optimizing the adsorption of H and OH and promoting the oxidation of CO on the catalyst surface, and then stimulates alkaline HOR activity and CO tolerance of the catalyst.

20.
Heliyon ; 10(8): e29366, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38638960

RESUMEN

Background: Sivelestat, a selective inhibitor of neutrophil elastase (NE), can mitigate sepsis-related acute lung injury. However, the role of sivelestat in inhibiting oxidative stress and attenuating sepsis-related acute kidney injury (AKI) remains unclear. Here, we reported the effects of sivelestat against oxidative stress-induced AKI by suppressing the production of oxidative stress indicators. Materials and methods: A male Sprague-Dawley rat model of sepsis was established by cecal ligation and puncture (CLP). Sivelestat or normal saline was administered into jugular vein with a sustained-release drug delivery system. Indicators of inflammation and AKI, including white blood cells (WBC), neutrophils, lymphocytes, C-reactive proteins (CRP), procalcitonin (PCT), blood urea nitrogen (BUN), creatinine (Cr) and uric acid (UA), were assessed at 24 h post-sivelestat treatment. Indicators of liver injury, including direct bilirubin (DBIL), indirect bilirubin (IBIL), aspartate aminotransferase (AST) and alanine aminotransferase (ALT), were also assessed at 24 h post-sivelestat treatment. Indicators of oxidative stress, including superoxide dismutase (SOD), malondialdehyde (MDA) and glutathione peroxidase (GSH-Px), were assessed at 12 h and 24 h post-sivelestat treatment. At 24 h post-sivelestat treatment, H&E staining of kidney and liver tissue was performed to observe pathological alterations. Results: At 24 h post normal saline or sivelestat (0.2 g/kg body weight) treatment, WBC, neutrophil, CRP, PCT, MDA, BUN, Cr, UA, AST, ALT, DBIL and IBIL were increased, while SOD and GSH-Px were decreased, in septic rats treated with normal saline compared with that in non-septic rats treated with normal saline (all p < 0.05). The changes of these indicators were reversed in septic rats treated with sivelestat compared with that in septic rats treated with normal saline (all p < 0.05). Similar results were found regarding the levels of oxidative stress indicators at 12 h post-sivelestat treatment. The degenerative histopathological changes in both kidney and liver tissues were ameliorated upon sivelestat treatment. Conclusions: Sivelestat plays a protective role in sepsis-related AKI by inhibiting oxidative stress. Our study reveals a possible therapeutic potential of sivelestat for oxidative stress-induced AKI.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...