Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 12(6)2023 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-36986973

RESUMEN

The pivotal role of cysteine-rich receptor-like kinases (CRKs) in modulating growth, development, and responses to stress has been widely acknowledged in Arabidopsis. However, the function and regulation of CRK41 has remained unclear. In this study, we demonstrate that CRK41 is critical for modulating microtubule depolymerization in response to salt stress. The crk41 mutant exhibited increased tolerance, while overexpression of CRK41 led to hypersensitivity to salt. Further analysis revealed that CRK41 interacts directly with the MAP kinase3 (MPK3), but not with MPK6. Inactivation of either MPK3 or MPK6 could abrogate the salt tolerance of the crk41 mutant. Upon NaCl treatment, microtubule depolymerization was heightened in the crk41 mutant, yet alleviated in the crk41mpk3 and crk41mpk6 double mutants, indicating that CRK41 suppresses MAPK-mediated microtubule depolymerizations. Collectively, these results reveal that CRK41 plays a crucial role in regulating microtubule depolymerization triggered by salt stress through coordination with MPK3/MPK6 signalling pathways, which are key factors in maintaining microtubule stability and conferring salt stress resistance in plants.

2.
J Digit Imaging ; 36(4): 1597-1607, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36932252

RESUMEN

Breast cancer is the leading cause of cancer-related mortality in women worldwide. Despite the rapid developments in diagnostic techniques and medical sciences, pathologic diagnosis is still recognized as the gold standard for disease diagnose. Pathologic diagnosis is a time-consuming task performed for pathologists, needing profound professional knowledge and long-term accumulated diagnostic experience. Therefore, the development of automatic and precise histopathological image classification is essential for medical diagnosis. In this study, an improved VGG network was used to classify the breast cancer histopathological image from intraoperative rapid frozen sections. We adopt a transformed loss function by adding a penalty to cross-entropy in our training stage, which improved the accuracy on test data by 4.39%. Laplacian-4 was used for the enhancement of images, which contributes to the improvement of the accuracy. The accuracy of the proposed model on training data and test data reached 88.70% and 82.27%, respectively, which outperforms the original model by 9.39% of accuracy in test data. The process time was less than 0.25 s per image on average. Meanwhile, the heat maps of predictions were given to show the evidential regions in histopathological images, which could drive improvements in the accuracy, speed, and clinical value of pathological diagnoses. In addition to helping with the actual diagnosis, this technology may be a benefit to pathologists, surgeons, and patients. It might prove to be a helpful tool for pathologists in the future.


Asunto(s)
Neoplasias de la Mama , Medicina , Humanos , Femenino , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/cirugía , Neoplasias de la Mama/patología , Secciones por Congelación/métodos , Redes Neurales de la Computación , Patólogos
3.
Nutrients ; 14(16)2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-36014845

RESUMEN

Trimethylamine-N-oxide (TMAO), a gut-microbiota-dependent metabolite after ingesting dietary choline, has been identified as a novel risk factor for atherosclerosis through inducing vascular inflammation. However, the underlying molecular mechanism is poorly understood. Using an in vitro vascular cellular model, we found that the TMAO-induced inflammation responses were correlated with an elevation of ROS levels and downregulation of SIRT1 expression in VSMCs and HUVECs. The overexpression of SIRT1 could abrogate both the stimulation of ROS and inflammation. Further studies revealed that AMPK was also suppressed by TMAO and was a mediator upstream of SIRT1. Activation of AMPK by AICAR could reduce TMAO-induced ROS and inflammation. Moreover, the GSH precursor NAC could attenuate TMAO-induced inflammation. In vivo studies with mice models also showed that choline-induced production of TMAO and the associated glycolipid metabolic changes leading to atherosclerosis could be relieved by NAC and a probiotic LP8198. Collectively, the present study revealed an unrecognized mechanistic link between TMAO and atherosclerosis risk, and probiotics ameliorated TMAO-induced atherosclerosis through affecting the gut microbiota. Consistent with previous studies, our data confirmed that TMAO could stimulate inflammation by modulating cellular ROS levels. However, this was not due to direct cytotoxicity but through complex signaling pathways involving AMPK and SIRT1.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Aterosclerosis , Microbioma Gastrointestinal , Sirtuina 1 , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Aterosclerosis/etiología , Aterosclerosis/metabolismo , Colina/metabolismo , Colina/farmacología , Microbioma Gastrointestinal/fisiología , Inflamación/etiología , Inflamación/metabolismo , Metilaminas/metabolismo , Ratones , Óxidos , Especies Reactivas de Oxígeno/metabolismo , Sirtuina 1/metabolismo
4.
Life Sci ; 289: 120242, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34922939

RESUMEN

Bulky DNA damage inducing chemotherapeutic cancer drugs such as cisplatin (CIS) and doxorubicin (DOX) are commonly used in the treatment of a variety of cancers. However, they often cause multi-organ toxicity, and the mechanisms underlying are not clear. Using cellular model, the present study showed that persistent endogenous reactive oxygen species (ROS) were stimulated after a single dose short treatment with CIS and DOX. ROS level correlated with the formation of DNA double-strand breaks (DSBs). Knockdown BRCA1, a key player involved in homologous recombination (HR), enhanced ROS accumulation. Whereas knockdown DNA-PKcs and overexpress BRCA1 to inhibit nonhomologous end-joining (NHEJ) repair pathway and restore HR can partially suppress ROS levels. These data indicated that ROS production is associated with DSB formation and repair which is likely a downstream event of DNA repair. Further studies showed that knockdown DNA repair regulators PP2A but not ATM, could partially reduce ROS too. The induction of ROS affected the level of proinflammatory cytokines interleukin-1ß (IL-1ß), interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α). Collectively, the present study reveals that DNA repair associated metabolism change and oxidative stress may be a direct cause of the severe side effects associated with genotoxic chemotherapy cancer drugs.


Asunto(s)
Antineoplásicos , Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades/efectos de los fármacos , ADN de Neoplasias , Proteínas de Neoplasias , Neoplasias , Antineoplásicos/efectos adversos , Antineoplásicos/farmacología , Línea Celular Tumoral , ADN de Neoplasias/genética , ADN de Neoplasias/metabolismo , Humanos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA