Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 190
Filtrar
1.
ACS Omega ; 9(38): 39472-39483, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39346841

RESUMEN

Preventing microbial infections and accelerating wound closure are essential in the process of wound healing. In this study, various concentrations of carvacrol (CA) were loaded into polyacrylonitrile/poly(ethylene oxide) (PAN/PEO) nanofiber membranes to develop potential wound dressing materials via an electrospinning technique. The morphology and structure of the PAN/PEO/CA nanofiber membrane were analyzed by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR), respectively. Subsequently, antimicrobial performance testing showed that the PAN/PEO/CA nanofiber membrane exhibited antimicrobial activity in a concentration-dependent manner. Moreover, SEM and transmission electron microscopy revealed that the number of Staphylococcus aureus decreased significantly and the microstructure of the biofilm was seriously damaged. Next, compared with the control and PAN/PEO groups, the PAN/PEO/5% CA group in a full-thickness skin infection model not only exhibited reduced wound exudate on day 2 after infection but also displayed a greater ability to achieve complete skin regeneration, with faster wound healing. Finally, the Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed that the downregulated differentially expressed genes between PAN/PEO- and PAN/PEO/5% CA-treated S. aureus were enriched in the two-component system and S. aureus infection. In conclusion, the antimicrobial materials of PAN/PEO/CA inhibited microbial growth and promoted wound healing with potential applications in the clinical management of wounds.

2.
ACS Appl Mater Interfaces ; 16(38): 51565-51574, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39276071

RESUMEN

A three-dimensional (3D) hierarchical microfiber bundle-based scaffold integrated with silver nanowires (AgNWs) and porous polyurethane (PU) was designed for the Joule heater via a facile dip-coating method. The interconnected micrometer-sized voids and unique hierarchical structure benefit uniform AgNWs anchored and the formation of a high-efficiency 3D conductive network. As expected, this composite exhibits a superior electrical conductivity of 1586.4 S/m and the best electrothermal conversion performance of 118.6 °C at 2.0 V compared to reported wearable Joule heaters to date. Moreover, the durable microfiber bundle-PU network provides strong mechanical properties, allowing for the stable and durable electrothermal performance of such a composite to resist twisting, bending, abrasion, and washing. Application studies show that this kind of Joule heater is suitable for a wide range of applications, such as seat heating, a heating jacket, personal thermal management, etc.

3.
Mar Drugs ; 22(9)2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39330259

RESUMEN

Heme, as an essential cofactor and source of iron for cells, holds great promise in various areas, e.g., food and medicine. In this study, the model cyanobacteria Synechocystis sp. PCC6803 was used as a host for heme synthesis. The heme synthesis pathway and its competitive pathway were modified to obtain an engineered cyanobacteria with high heme production, and the total heme production of Synechocystis sp. PCC6803 was further enhanced by the optimization of the culture conditions and the enhancement of mixotrophic ability. The co-expression of hemC, hemF, hemH, and the knockout of pcyA, a key gene in the heme catabolic pathway, resulted in a 3.83-fold increase in the heme production of the wild type, while the knockout of chlH, a gene encoding a Mg-chelatase subunit and the key enzyme of the chlorophyll synthesis pathway, resulted in a 7.96-fold increase in the heme production of the wild type; further increased to 2.05 mg/L, its heme production was 10.25-fold that of the wild type under optimized mixotrophic culture conditions. Synechocystis sp. PCC6803 has shown great potential as a cell factory for photosynthetic carbon sequestration for heme production. This study provides novel engineering targets and research directions for constructing microbial cell factories for efficient heme production.


Asunto(s)
Hemo , Ingeniería Metabólica , Synechocystis , Synechocystis/metabolismo , Synechocystis/genética , Ingeniería Metabólica/métodos , Hemo/metabolismo , Hemo/biosíntesis
4.
J Phys Chem Lett ; 15(38): 9566-9574, 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39265186

RESUMEN

Unveiling the composition-dependent catalytic mechanism of Pt-based alloy cathodes for the oxygen reduction reaction (ORR) helps improve the proton exchange membrane fuel cells. Using density functional theory calculations, this study investigates the ORR catalytic performance of the Pt-Ni system with various compositions (1.00, ∼0.99, 0.75, 0.50, 0.25, ∼0.01, and 0.00). The ordered solid solution PtNi3(111) system shows activity comparable to Pt(111) and is cost-effective. The Ni1/Pt(111) system, featuring a single Ni atom on the Pt(111) surface as a surface single-atom alloy (SSAA), demonstrates the highest activity with an overpotential of only 0.28, which could be further reduced to 0.21 V by decreasing the surface Ni concentration to 1/16 monolayer coverage. The predicted high activity of Ni1/Pt(111) is confirmed when considering factors such as the implicit solution environment, constant potential conditions, and protonation capability. Moreover, surface-adsorbed oxygen species driven by reaction conditions stabilize these single Ni atoms of Ni1/Pt(111) by preventing segregation and dissolution processes, thereby exhibiting a dual functionality. This study reveals the composition dependence of Pt-based alloys and highlights the stability mechanisms of SSAA catalysts during the ORR.

5.
Artículo en Inglés | MEDLINE | ID: mdl-39320991

RESUMEN

AutoDock Vina and its derivatives have established themselves as a prevailing pipeline for virtual screening in contemporary drug discovery. Our Vina-GPU method leverages the parallel computing power of GPUs to accelerate AutoDock Vina, and Vina-GPU 2.0 further enhances the speed of AutoDock Vina and its derivatives. Given the prevalence of large virtual screens in modern drug discovery, the improvement of speed and accuracy in virtual screening has become a longstanding challenge. In this study, we propose Vina-GPU 2.1, aimed at enhancing the docking speed and precision of AutoDock Vina and its derivatives through the integration of novel algorithms to facilitate improved docking and virtual screening outcomes. Building upon the foundations laid by Vina-GPU 2.0, we introduce a novel algorithm, namely Reduced Iteration and Low Complexity BFGS (RILC-BFGS), designed to expedite the most time-consuming operation. Additionally, we implement grid cache optimization to further enhance the docking speed. Furthermore, we employ optimal strategies to individually optimize the structures of ligands, receptors, and binding pockets, thereby enhancing the docking precision. To assess the performance of Vina-GPU 2.1, we conduct extensive virtual screening experiments on three prominent targets, utilizing two fundamental compound libraries and seven docking tools. Our results demonstrate that Vina-GPU 2.1 achieves an average 4.97-fold acceleration in docking speed and an average 342% improvement in EF1% compared to Vina-GPU 2.0. The source code and tools for Vina-GPU 2.1 are freely available accompanied by comprehensive instructions and illustrative examples.

6.
Front Genet ; 15: 1407202, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38966008

RESUMEN

Defective oocyte maturation is a common cause of female infertility. The loss of the zona pellucida (ZP) represents a specific condition of impaired oocyte maturation. The extracellular matrix known as the ZP envelops mammalian oocytes and preimplantation embryos, exerting significant influence on oogenesis, fertilization, and embryo implantation. However, the genetic factors leading to the loss of the ZP in oocytes are not well understood. This study focused on patients who underwent oocyte retrieval surgery after ovarian stimulation and were found to have abnormal oocyte maturation without the presence of the ZP. Ultrasonography was performed during the surgical procedure to evaluate follicle development. Peripheral blood samples from the patient were subjected to exome sequencing. Here, a novel, previously unreported heterozygous mutation in the ZP1 gene was identified. Within the ZP1 gene, we discovered a novel heterozygous mutation (ZP1 NM_207341.4:c.785A>G (p.Y262C)), specifically located in the trefoil domain. Bioinformatics comparisons further revealed conservation of the ZP1-Y262C mutation across different species. Model predictions of amino acid mutations on protein structure and cell immunofluorescence/western blot experiments collectively confirmed the detrimental effects of the ZP1-Y262C mutation on the function and expression of the ZP1 protein. The ZP1-Y262C mutation represents the novel mutation in the trefoil domain of the ZP1 protein, which is associated with defective oocyte maturation in humans. Our report enhances comprehension regarding the involvement of ZP-associated genes in female infertility and offers enriched understanding for the genetic diagnosis of this condition.

7.
Environ Pollut ; 356: 124360, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38871171

RESUMEN

Rapid advancements in nanotechnology have been integrated into various disciplines, leading to an increased prevalence of nanoparticle exposure. The widespread utilization of nanomaterials and heightened levels of particulate pollution have prompted government departments to intensify their focus on assessing the safety of nanoparticles (NPs). The cardiovascular system, crucial for maintaining human health, has emerged as vulnerable to damage from nanoparticle exposure. A mounting body of evidence indicates that interactions can occur when NPs come into contact with components of the cardiovascular system, contributing to adverse cardiovascular disease (CVD). However, the underlying molecular mechanisms driving these events remain elusive. This work provides a comprehensive review of recent advance on nanoparticle-induced adverse cardiovascular events and offers insight into the associated molecular mechanisms. Finally, the influencing factors of NPs-induced cardiovascular toxicity are discussed.


Asunto(s)
Enfermedades Cardiovasculares , Sistema Cardiovascular , Nanopartículas , Nanopartículas/toxicidad , Humanos , Enfermedades Cardiovasculares/inducido químicamente , Sistema Cardiovascular/efectos de los fármacos , Animales
8.
Front Endocrinol (Lausanne) ; 15: 1338094, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38919476

RESUMEN

Background: According to data from the World Health Organization (WHO), there is a significant public health issue regarding the increasing number of individuals affected by obesity and overweight on an annual basis. Therefore, it is imperative to urgently identify interventions that can effectively control and improve this condition. Baduanjin, as a medium-intensity exercise, appears a suitable approach for weight reduction among individuals with obesity. This paper aimed to provide a systematic review and meta-analysis of the efficacy of Baduanjin in addressing obesity and overweight, with the ultimate goal of assisting individuals with obesity in finding an effective, safe, and engaging method for weight reduction. Methods: We conducted a comprehensive search of multiple databases including PubMed, Cochrane Library, Web of Science, Embase, The China National Knowledge Infrastructure (CNKI), The Chinese Scientific Journal Database (VIP), The Chinese Biomedical Literature Database (CBM), and WanFang Database to identify relevant articles published from the inception of each database until September 2023. Specifically, we focused on randomized controlled trials (RCTs) investigating the effects of Baduanjin on weight reduction. Data from these studies were extracted and analyzed using appropriate statistical methods. In cases where there was no significant heterogeneity (I 2 < 50%, p > 0.1), we employed a fixed effects model for data synthesis; otherwise, a random effects model was selected. Funnel plots were used to assess publication bias, and the mean difference (MD) was reported as an indicator of treatment group differences. Results: A total of 420 participants were included in 10 studies. The MD results of the experimental group when compared with the control group were -3.69 (95%CI = -4.97 to -2.40, p < 0.001) for body weight (BW), -5.42 (95%CI = -6.56 to -4.28, p < 0.001) for body mass index (BMI), -1.36 (95%CI = -1.76 to -0.96, p < 0.001) for waist circumference (WC), -3.40 (95%CI = -4.43 to -2.37, p < 0.001) for hip circumference (HC), and -0.03 (95%CI = -0.04 to -0.02, p > 0.1) for the waist-to-hip ratio (WHR). All of the values in the experimental group showed significant difference. The results of the Egger's test (t = 1.43, p = 0.190) suggest that there was no substantial bias present within the data analysis process. The safety profile revealed no adverse events reported across all 10 studies. Conclusion: Baduanjin could be effective in reducing weight, and the practice of Baduanjin has the potential to regulate BW, BMI, WC, HC, and WHR. However, further well-designed RCTs are still necessary to provide more robust evidence in the future. Systematic review registration: http://www.crd.york.ac.uk/PROSPERO/, identifier CRD42024513789.


Asunto(s)
Obesidad , Sobrepeso , Humanos , Obesidad/terapia , Sobrepeso/terapia , Pérdida de Peso , Ensayos Clínicos Controlados Aleatorios como Asunto , Resultado del Tratamiento
9.
Environ Sci Technol ; 58(20): 8610-8630, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38720447

RESUMEN

Solar desalination, a green, low-cost, and sustainable technology, offers a promising way to get clean water from seawater without relying on electricity and complex infrastructures. However, the main challenge faced in solar desalination is salt accumulation, either on the surface of or inside the solar evaporator, which can impair solar-to-vapor efficiency and even lead to the failure of the evaporator itself. While many ideas have been tried to address this ″salt accumulation″, scientists have not had a clear system for understanding what works best for the enhancement of salt-rejecting ability. Therein, for the first time, we classified the state-of-the-art salt-rejecting designs into isolation strategy (isolating the solar evaporator from brine), dilution strategy (diluting the concentrated brine), and crystallization strategy (regulating the crystallization site into a tiny area). Through the specific equations presented, we have identified key parameters for each strategy and highlighted the corresponding improvements in the solar desalination performance. This Review provides a semiquantitative perspective on salt-rejecting designs and critical parameters for enhancing the salt-rejecting ability of dilution-based, isolation-based, and crystallization-based solar evaporators. Ultimately, this knowledge can help us create reliable solar desalination solutions to provide clean water from even the saltiest sources.


Asunto(s)
Agua de Mar , Purificación del Agua , Purificación del Agua/métodos , Agua de Mar/química , Luz Solar , Salinidad , Sales (Química)/química , Cloruro de Sodio/química
10.
Environ Sci Technol ; 58(23): 10287-10297, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38805641

RESUMEN

Though long recognized as synthetic precursors to other poly- and perfluoroalkyl substances (PFASs), most poly- and perfluoroalkyl sulfonyl halides (PASXs) cannot be directly measured and have generally received minimal attention. Inspired by the redox reaction between sulfonyl halide groups and p-toluenethiol in organic chemistry, we developed a novel nontarget analysis strategy for PASXs by intergrating derivatization and specific fragment-based liquid chromatography-high resolution mass spectrometry screening for m/z 82.961 [SO2F-] and m/z 95.934 [S2O2-]. By using this strategy, we discovered 11 PASXs, namely, perfluoroalkyl sulfonyl fluorides (5), polyfluoroalkyl sulfonyl fluorides (2), unsaturated perfluoroalkyl sulfonyl fluoride (1), and perfluoroalkyl sulfonyl chlorides (3) in soil samples collected from an abandoned fluorochemical manufacturing park. These average ∑PASXs concentrations were 1120 µg kg-1 (range: 9.7-9860 µg kg-1), which were very likely to be the key intermediates and undesired byproducts of electrochemical fluorination processes. Spatial variation in the mass ratio of ∑PASXs to ∑PFSAs (range: 0.7-795%) also indicates their different transportation pathways. More importantly, the decline of PASXs and increase of perfluoroalkyl sulfonates (when compared to a prior study at this site) suggest the continued hydrolysis of PASXs and the relatively fast environmental transformation rates in the abandoned fluorochemical park soils. Overall, these findings demonstrated the utility of a novel nontarget analysis strategy, which may change most PASXs from inferred precursors to measured intermediates and further could be adapted for structures, distribution, and transformation studies of PFASXs in other matrices.


Asunto(s)
Espectrometría de Masas , Contaminantes del Suelo , Suelo , Cromatografía Liquida , Contaminantes del Suelo/química , Suelo/química , Fluorocarburos/química , Monitoreo del Ambiente/métodos
11.
Am J Case Rep ; 25: e942826, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38659203

RESUMEN

BACKGROUND Wünderlich syndrome (WS) is a rare diagnosis of nontraumatic spontaneous renal hemorrhage into the subcapsular, perirenal, or pararenal spaces. Prompt and effective intervention is necessary for an accurate pathological diagnosis and preservation of life. In the current literature, open surgery is the primary option when conservative treatment fails, but there can be serious trauma and corresponding consequences. Herein, we present 3 cases of Wünderlich syndrome managed by robot-assisted laparoscopic nephrectomy via a retroperitoneal approach. CASE REPORT Patient 1 was a 44-year-old woman with right flank pain for 6 h. Patient 2 was a 53-year-old woman with a history of diabetes who had pain in her right flank pain and nausea for 1 day. Patient 3 was a 45-year-old man with left flank pain for 1 day. All cases of WS were confirmed by CT. All 3 patients were treated with retroperitoneal robot-assisted nephrectomy after conservative treatment failed. Pathological examination confirmed that patient 1 had angiomyolipoma, and patients 2 and 3 had renal clear cell carcinoma. At the 9-month follow-up, renal function was good and no evidence of recurrence or metastasis has been detected. CONCLUSIONS These cases have highlighted the importance of the clinical history and imaging findings in the diagnosis of Wünderlich syndrome, and show that rapid management can be achieved using robot-assisted laparoscopic nephrectomy. However, it is crucial to have a skilled surgical team and adequate preoperative preparation.


Asunto(s)
Laparoscopía , Nefrectomía , Procedimientos Quirúrgicos Robotizados , Humanos , Nefrectomía/métodos , Persona de Mediana Edad , Masculino , Femenino , Adulto , Síndrome , Enfermedades Renales/cirugía , Hemorragia/cirugía , Hemorragia/etiología , Neoplasias Renales/cirugía , Neoplasias Renales/complicaciones , Angiomiolipoma/cirugía , Angiomiolipoma/complicaciones , Angiomiolipoma/diagnóstico por imagen , Carcinoma de Células Renales/cirugía , Carcinoma de Células Renales/complicaciones
12.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(4): 494-499, 2024 Apr 10.
Artículo en Chino | MEDLINE | ID: mdl-38565518

RESUMEN

OBJECTIVE: To explore the genetic characteristics of three fetuses with regions of homozygosity (ROH). METHODS: Three fetuses with ROH diagnosed at Nanjing Drum Tower Hospital on December 2, 2020, March 19, 2021, and May 27, 2022, respectively were selected as the study subjects. Clinical data of the fetuses were collected. Chromosomal microarray analysis (CMA) was used to detect the ROH, and tandem repeat sequences (STR)-based multiplex PCR assay was used to identify the mosaicism status in fetus 1. RESULTS: Partial maternal isodisomy (iUPD) (16) was found in fetus 1, for which trisomy rescue may be accountable. Meanwhile, the fetus also has confined placental mosaicism (CPM) but not true mosaicism. The formation mechanism of ROH for fetus 2 was identity by descent. Partial maternal iUPD (7) was found in fetus 3, which may be due to gametic recombination. CONCLUSION: The ROH of the three fetuses were inherited from both parents or the mother. Above findings suggested that it is justified to detect ROH on imprinting disorder-related chromosomes when potential uniparental disomy is suspected.


Asunto(s)
Placenta , Disomía Uniparental , Humanos , Embarazo , Femenino , Disomía Uniparental/genética , Mosaicismo , Trisomía , Madres
13.
J Phys Chem Lett ; 15(10): 2815-2824, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38441004

RESUMEN

Understanding the structural evolution of single-atom catalysts (SACs) in catalytic reactions is crucial for unraveling their catalytic mechanisms. In this study, we utilize density functional theory calculations to delve into the active phase evolution and the oxygen reduction reaction (ORR) mechanism of tungsten semicarbide-based transition metal SACs (TM1/W2C). The stable crystal phases and optimal surface exposures of W2C are identified by using ab initio atomistic thermodynamics simulations. Focusing on the W-terminated (001) surface, we screen 13 stable TM1/W2C variants, ultimately selecting Pt1/W2C(001) as our primary model. The surface Pourbaix diagram, mapped for this model under ORR conditions, reveals dynamic Pt1 migration on the surface, triggered by surface oxidation. This discovery suggests a novel single-atom evolution pathway. Remarkably, this single-atom migration behavior is also discerned in seven other group VIII SACs, enhancing both their catalytic activity and their stability. Our findings offer insights into the evolution of active phases in SACs, considering substrate structural arrangement, single-atom incorporation, and self-optimization of catalysts under various conditions.

14.
Aging Clin Exp Res ; 36(1): 65, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38472538

RESUMEN

OBJECTIVES: Few studies comparing the effects of different types of Tai Chi exercises on preventing falls in older adults. We compared the effects for finding an optimal intervention. METHODS: We searched 12 databases, including PubMed, EMBASE, Cochrane Library, Chinese National Knowledge Infrastructure (CNKI) and so on, from their inception to January 13, 2023. Randomized controlled trials incorporating different types of Tai Chi for preventing falls in older adults were included. The outcome measures were the incidence of falls and Berg Balance Scale (BBS). Network meta-analysis (NMA) was conducted using Stata 15.1 based on a frequentist framework. RESULTS: Seventeen trials were eligible, including 3470 participants and four types of Tai Chi. They were 24-form simplified Tai Chi (24-form), Yang style Tai Chi (Yang style), Sun style Tai Chi (Sun style) and Tai Chi exercise program (TCEP). In paired meta-analysis, for incidence of falls, 24-form (Relative Risk (RR) = 0.59, 95% confidence interval (CI) [0.40, 0.86]) was more efficient than the control group. For BBS outcome, 24-form (MD (mean difference) = 2.32, 95% CI [1.42, 3.22]) was better than the control group. In the NMA, the results of incidence of falls were as follows: 24-form > Yang style > Sun style > control > TCEP. The rank probability of BBS was as follows: 24-form > TCEP > Yang style > control. CONCLUSION: Among the four types of Tai Chi studied, the 24-form simplified Tai Chi has shown better efficacy than other types.


Asunto(s)
Accidentes por Caídas , Taichi Chuan , Anciano , Humanos , Terapia por Ejercicio , Metaanálisis en Red , Ensayos Clínicos Controlados Aleatorios como Asunto , Taichi Chuan/métodos , Accidentes por Caídas/prevención & control
15.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(2): 167-173, 2024 Feb 10.
Artículo en Chino | MEDLINE | ID: mdl-38311554

RESUMEN

OBJECTIVE: To explore the genetic etiology of two children with Spinal muscular atrophy with respiratory distress type 1 (SMARD1), and prevent the recurrence of birth defects. METHODS: Two unrelated families who had visited the Obstetrics and Gynecology Medical Center of Drum Tower Hospital from August to November 2021 were selected as the study subjects. Copy number of SMN1 gene exon 7 for the probands and their parents was detected by multiple ligation-dependent probe amplification (MLPA). and whole exome sequencing (WES) was carried out to screen the variants in the probands. Sanger sequencing was used to validate the variants within the families. Pathogenicity of the variants were predicted by bioinformatic analysis. Based on the results, prenatal diagnosis was performed for the fetuses. RESULTS: Both probands were found to harbor compound heterozygous variants of the IGHMBP2 gene, which were inherited from their parents. Among these, c.1144C>T, c.866delG and c.1666C>G were previously unreported and respectively classified as pathogenic variant (PVS1+PM2_Supporting+PP3+PP4), likely pathogenic variant (PM1+PM2_Supporting+PM4+PP3+PP4) and likely pathogenic variant (PM1+PM2_Supporting+PP2+PP3+PP4) based on the ACMG guidelines. Through preimplantation genetic testing for monogenic (PGT-M) and interventional prenatal diagnosis, transmission of the variants within the families was successfully blocked. CONCLUSION: The SMARD1 in both children may be attributed to the compound heterozygous variants of the IGHMBP2 gene, which has facilitated the genetic diagnosis and counselling, and provided reference for delineating the molecular pathogenesis of this disease.


Asunto(s)
Atrofia Muscular Espinal , Síndrome de Dificultad Respiratoria del Recién Nacido , Embarazo , Niño , Femenino , Humanos , Linaje , Atrofia Muscular Espinal/diagnóstico , Atrofia Muscular Espinal/genética , Diagnóstico Prenatal , China , Mutación , Proteínas de Unión al ADN/genética , Factores de Transcripción/genética
16.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(2): 205-208, 2024 Feb 10.
Artículo en Chino | MEDLINE | ID: mdl-38311560

RESUMEN

OBJECTIVE: To explore the clinical manifestations of two fetuses harboring heterozygous deletions of the SHOX gene. METHODS: Two pregnant women who had presented at the Prenatal Diagnosis Center of Nanjing Drum Tower Hospital respectively on June 24, 2022 and July 27, 2022 were selected as the study subjects. In case 1, prenatal ultrasonography had shown short femur and intrauterine growth retardation of the fetus. Case 2 had a history of spontaneous abortions due to structural chromosomal aberrations. Fetus 1 had undergone a test for the FGFR3 gene, and both fetuses were subjected to single nucleotide polymorphism-based microarray (SNP array) analysis. RESULTS: After excluding the influence of FGFR3 gene variant, fetus 1 was found to harbor a heterozygous 883 kb deletion at Xpter or Ypter, whilst fetus 2 was found to harbor a 5.75 Mb deletion in the Xpter region. Both deletions have encompassed the SHOX gene. The origin of the deletion in fetus 1 was unknown, whilst that in fetus 2 was inherited from its mother. Fetus 1 has been delivered at term with a normal phenotype, and fetus 2 was not born yet. CONCLUSION: The intrauterine and postnatal phenotypes of fetuses may be predicted by combining the ultrasound finding, parental phenotype and results of CMA, and the results can facilitate genetic counseling and decision making over the pregnancy.


Asunto(s)
Trastornos de los Cromosomas , Diagnóstico Prenatal , Embarazo , Femenino , Humanos , Diagnóstico Prenatal/métodos , Aberraciones Cromosómicas , Fenotipo , Trastornos de los Cromosomas/genética , Feto , Proteína de la Caja Homeótica de Baja Estatura/genética
17.
Environ Sci Technol ; 58(8): 3838-3848, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38351523

RESUMEN

Substantial natural chlorination processes are a growing concern in diverse terrestrial ecosystems, occurring through abiotic redox reactions or biological enzymatic reactions. Among these, exoenzymatically mediated chlorination is suggested to be an important pathway for producing organochlorines and converting chloride ions (Cl-) to reactive chlorine species (RCS) in the presence of reactive oxygen species like hydrogen peroxide (H2O2). However, the role of natural enzymatic chlorination in antibacterial activity occurring in soil microenvironments remains unexplored. Here, we conceptualized that heme-containing chloroperoxidase (CPO)-catalyzed chlorination functions as a naturally occurring disinfection process in soils. Combining antimicrobial experiments and microfluidic chip-based fluorescence imaging, we showed that the enzymatic chlorination process exhibited significantly enhanced antibacterial activity against Escherichia coli and Bacillus subtilis compared to H2O2. This enhancement was primarily attributed to in situ-formed RCS. Based on semiquantitative imaging of RCS distribution using a fluorescence probe, the effective distance of this antibacterial effect was estimated to be approximately 2 mm. Ultrahigh-resolution mass spectrometry analysis showed over 97% similarity between chlorine-containing formulas from CPO-catalyzed chlorination and abiotic chlorination (by sodium hypochlorite) of model dissolved organic matter, indicating a natural source of disinfection byproduct analogues. Our findings unveil a novel natural disinfection process in soils mediated by indigenous enzymes, which effectively links chlorine-carbon interactions and reactive species dynamics.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Desinfección , Cloro/química , Cloro/metabolismo , Halogenación , Peróxido de Hidrógeno , Suelo , Ecosistema , Antibacterianos , Catálisis
18.
Sensors (Basel) ; 24(4)2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38400490

RESUMEN

This paper presents an FPGA-based lightweight and real-time infrared image processor based on a series of hardware-oriented lightweight algorithms. The two-point correction algorithm based on blackbody radiation is introduced to calibrate the non-uniformity of the sensor. With precomputed gain and offset matrices, the design can achieve real-time non-uniformity correction with a resolution of 640×480. The blind pixel detection algorithm employs the first-level approximation to simplify multiple iterative computations. The blind pixel compensation algorithm in our design is constructed on the side-window-filtering method. The results of eight convolution kernels for side windows are computed simultaneously to improve the processing speed. Due to the proposed side-window-filtering-based blind pixel compensation algorithm, blind pixels can be effectively compensated while details in the image are preserved. Before image output, we also incorporated lightweight histogram equalization to make the processed image more easily observable to the human eyes. The proposed lightweight infrared image processor is implemented on Xilinx XC7A100T-2. Our proposed lightweight infrared image processor costs 10,894 LUTs, 9367 FFs, 4 BRAMs, and 5 DSP48. Under a 50 MHz clock, the processor achieves a speed of 30 frames per second at the cost of 1800 mW. The maximum operating frequency of our proposed processor can reach 186 MHz. Compared with existing similar works, our proposed infrared image processor incurs minimal resource overhead and has lower power consumption.

19.
Insects ; 15(2)2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38392551

RESUMEN

Wolbachia bacteria (phylum Proteobacteria) are ubiquitous intracellular parasites of diverse invertebrates. In insects, coevolution has forged mutualistic associations with Wolbachia species, influencing reproduction, immunity, development, pathogen resistance, and overall fitness. However, the impact of Wolbachia on other microbial associates within the insect microbiome, which are crucial for host fitness, remains less explored. The diamondback moth (Plutella xylostella), a major pest of cruciferous vegetables worldwide, harbors the dominant Wolbachia strain plutWB1, known to distort its sex ratio. This study investigated the bacterial community diversity and dynamics across different developmental life stages and Wolbachia infection states in P. xylostella using high-throughput 16S rDNA amplicon sequencing. Proteobacteria and Firmicutes dominated the P. xylostella microbiome regardless of life stage or Wolbachia infection. However, the relative abundance of dominant genera, including an unclassified genus of Enterobacteriaceae, Wolbachia, Carnobacterium, and Delftia tsuruhatensis, displayed significant stage-specific variations. While significant differences in bacterial diversity and composition were observed across life stages, Wolbachia infection had no substantial impact on overall diversity. Nonetheless, relative abundances of specific genera differed between infection states. Notably, Wolbachia exhibited a stable, high relative abundance across all stages and negatively correlated with an unclassified genus of Enterobacteriaceae, Delftia tsuruhatensis, and Carnobacterium. Our findings provide a foundational understanding of the complex interplay between the host, Wolbachia, and the associated microbiome in P. xylostella, paving the way for a deeper understanding of their complex interactions and potential implications for pest control strategies.

20.
Sci Total Environ ; 921: 171230, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38402958

RESUMEN

Plastic products have played an indispensable role in our daily lives for several decades, primarily due to their cost-effectiveness and unmatched convenience. Nevertheless, recent developments in nanotechnology have propelled our attention toward a distinct category of plastic fine particulates known as micro(nano)-plastics (MPs/NPs). The investigation of the cytotoxic effects of MPs/NPs has emerged as a central and burgeoning area of research in environmental toxicology and cell biology. In the scope of this comprehensive review, we have meticulously synthesized recent scientific inquiries to delve into the intricate interplay between MPs/NPs and programmed cell death mechanisms, which encompass a range of highly regulated processes. First, the signaling pathways and molecular mechanisms of different programmed death modalities induced by MPs/NPs were elaborated, including apoptosis, autophagy, necroptosis, ferroptosis, and pyroptosis. The causes of different programmed deaths induced by MPs/NPs, such as size, surface potential, functional group modification, aging, biological crown, and co-exposure of MPs/NPs are further analyzed. In contrast, the various cellular programmed death modes induced by MPs/NPs are not alone most of the time, and lastly, the connections between different cellular programmed death modes induced by MPs/NPs, such as interconversion, mutual promotion, and mutual inhibition, are explained. Our primary objective is to unveil the multifaceted toxicological implications of MPs/NPs on the intricate web of cellular fate and biological homeostasis. This endeavor not only broadens our understanding of the potential risks associated with MPs/NPs exposure but also underscores the urgent need for comprehensive risk assessments and regulatory measures in the context of environmental health.


Asunto(s)
Apoptosis , Contaminantes Químicos del Agua , Piroptosis , Autofagia , Diferenciación Celular , Plásticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA