Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Appl Clin Med Phys ; 24(7): e13954, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36913484

RESUMEN

PURPOSE: We developed and tested a novel method of creating intensity modulated proton arc therapy (IMPAT) plans that uses computing resources similar to those for regular intensity-modulated proton therapy (IMPT) plans and may offer a dosimetric benefit for patients with ependymoma or similar tumor geometries. METHODS: Our IMPAT planning method consists of a geometry-based energy selection step with major scanning spot contributions as inputs computed using ray-tracing and single-Gaussian approximation of lateral spot profiles. Based on the geometric relation of scanning spots and dose voxels, our energy selection module selects a minimum set of energy layers at each gantry angle such that each target voxel is covered by sufficient scanning spots as specified by the planner, with dose contributions above the specified threshold. Finally, IMPAT plans are generated by robustly optimizing scanning spots of the selected energy layers using a commercial proton treatment planning system (TPS). The IMPAT plan quality was assessed for four ependymoma patients. Reference three-field IMPT plans were created with similar planning objective functions and compared with the IMPAT plans. RESULTS: In all plans, the prescribed dose covered 95% of the clinical target volume (CTV) while maintaining similar maximum doses for the brainstem. While IMPAT and IMPT achieved comparable plan robustness, the IMPAT plans achieved better homogeneity and conformity than the IMPT plans. The IMPAT plans also exhibited higher relative biological effectiveness (RBE) enhancement than did the corresponding reference IMPT plans for the CTV in all four patients and brainstem in three of them. CONCLUSIONS: The proposed method demonstrated potential as an efficient technique for IMPAT planning and may offer a dosimetric benefit for patients with ependymoma or tumors in close proximity to critical organs. IMPAT plans created using this method had elevated RBE enhancement associated with increased linear energy transfer (LET) in both targets and abutting critical organs.


Asunto(s)
Ependimoma , Terapia de Protones , Radioterapia de Intensidad Modulada , Humanos , Terapia de Protones/métodos , Protones , Dosificación Radioterapéutica , Ependimoma/radioterapia , Radioterapia de Intensidad Modulada/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Órganos en Riesgo
2.
Adv Radiat Oncol ; 6(4): 100683, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33824935

RESUMEN

PURPOSE: To provide a series of suggestions for other Medical Physics practices to follow in order to provide effective radiation therapy treatments during the COVID-19 pandemic. METHODS AND MATERIALS: We reviewed our entire Radiation Oncology infrastructure to identify a series of workflows and policy changes that we implemented during the pandemic that yielded more effective practices during this time. RESULTS: We identified a structured list of several suggestions that can help other Medical Physics practices overcome the challenges involved in delivering high quality radiotherapy services during this pandemic. CONCLUSIONS: Our facility encompasses 4 smaller Houston Area Locations (HALs), a main campus with 8 distinct services based on treatment site (ie. Thoracic, Head and Neck, Breast, Gastrointestinal, Gynecology, Genitourinary, Hematologic Malignancies, Melanoma and Sarcoma and Central Nervous System/Pediatrics), a Proton Center facility, an MR-Linac, a Gamma Knife clinic and an array of brachytherapy services. Due to the scope of our services, we have gained experience in dealing with the rapidly changing pandemic effects on our clinical practice. Our paper provides a resource to other Medical Physics practices in search of workflows that have been resilient during these challenging times.

3.
Head Neck ; 42(2): 289-301, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31710172

RESUMEN

BACKGROUND: Proton radiotherapy (PRT) may be a less toxic alternative to photon radiotherapy (XRT) for patients with head and neck squamous cell carcinoma (HNSCC). However, the molecular responses of HNSCC cells to PRT vs XRT are unclear. METHODS: Proteomics analyses of protein expression profiles by reverse-phase protein arrays were done for two human papillomavirus [HPV]-negative and two HPV+ cell lines. Expression patterns of 175 proteins involved in several signaling pathways were tested. RESULTS: Compared with PRT, XRT tended to induce lower expression of DNA damage repair-and cell cycle arrest-related proteins and higher expression of cell survival- and proliferation-related proteins. CONCLUSIONS: Under these experimental conditions, PRT and XRT induced different protein expression and activation profiles. Further preclinical verification is needed, as are studies of tumor pathway mutations as biomarkers for choice of treatment or as radiosensitization targets to improve the response of HNSCC to PRT or XRT.


Asunto(s)
Neoplasias de Cabeza y Cuello , Infecciones por Papillomavirus , Línea Celular Tumoral , Reparación del ADN , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/radioterapia , Humanos , Proteómica , Protones , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/radioterapia
4.
J Appl Clin Med Phys ; 20(10): 92-100, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31541526

RESUMEN

PURPOSE: Kilo-voltage cone-beam computed tomography (CBCT) is widely used for patient alignment, contour propagation, and adaptive treatment planning in radiation therapy. In this study, we evaluated the accuracy of deformable image registration (DIR) for CBCT under various imaging protocols with different noise and patient dose levels. METHODS: A physical phantom previously developed to facilitate end-to-end testing of the DIR accuracy was used with Varian Velocity v4.0 software to evaluate the performance of image registration from CT to CT, CBCT to CT, and CBCT to CBCT. The phantom is acrylic and includes several inserts that simulate different tissue shapes and properties. Deformations and anatomic changes were simulated by changing the rotations of both the phantom and the inserts. CT images (from a head and neck protocol) and CBCT images (from pelvis, head and "Image Gently" protocols) were obtained with different image noise and dose levels. Large inserts were filled with Mobil DTE oil to simulate soft tissue, and small inserts were filled with bone materials. All inserts were contoured before the DIR process to provide a ground truth contour size and shape for comparison. After the DIR process, all deformed contours were compared with the originals using Dice similarity coefficient (DSC) and mean distance to agreement (MDA). Both large and small volume of interests (VOIs) for DIR volume selection were tested by simulating a DIR process that included whole patient image volume and clinical target volumes (CTV) only (for CTVs propagation). RESULTS: For cross-modality DIR registration (CT to CBCT), the DSC were >0.8 and the MDA were <3 mm for CBCT pelvis, and CBCT head protocols. For CBCT to CBCT and CT to CT, the DIR accuracy was improved relative to the cross-modality tests. For smaller VOIs, the DSC were >0.8 and MDA <2 mm for all modalities. CONCLUSIONS: The accuracy of DIR depends on the quality of the CBCT image at different dose and noise levels.


Asunto(s)
Algoritmos , Tomografía Computarizada de Haz Cónico/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Fantasmas de Imagen , Garantía de la Calidad de Atención de Salud/normas , Planificación de la Radioterapia Asistida por Computador/métodos , Tomografía Computarizada por Rayos X/métodos , Neoplasias de Cabeza y Cuello/diagnóstico por imagen , Neoplasias de Cabeza y Cuello/radioterapia , Humanos , Órganos en Riesgo/efectos de la radiación , Dosificación Radioterapéutica , Radioterapia de Intensidad Modulada/métodos
5.
Med Dosim ; 43(2): 184-194, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29753334

RESUMEN

The capabilities of the Eclipse treatment planning system (TPS) (Varian Medical Systems, Palo Alto, CA) for proton therapy treatment planning are described. Various steps involved in the planning process to produce a 3-dimensional (3D) dose distribution both for the passive scattering and pencil beam scanning proton beam therapy are outlined. Mitigation of range and setup uncertainties through robust optimization is discussed. Use of verification plans for patient treatment field dosimetry quality assurance (QA) is presented. Limitations of the Eclipse TPS and future developments are discussed.


Asunto(s)
Terapia de Protones , Planificación de la Radioterapia Asistida por Computador/métodos , Humanos
6.
Med Phys ; 44(12): 6661-6671, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28975637

RESUMEN

PURPOSE: To systematically analyze and present the properties of a small-field, double-scattering proton beam line intended to be used for the treatment of ocular cancer, and to provide configuration data for commission of the Eclipse Ocular Proton Planning System. METHODS: Measurements were made using ionization chambers, diodes, and films to determine dose profiles and output factors of the proton beams of the beam line at the Proton Therapy Center Houston. In parallel, Monte Carlo simulations were performed to validate the measured data and to provide additional insight into detailed beam parameters that are hard to measure, such as field size factors and a comparison of output factors as a function of circular and rectangular fields. RESULTS: The presented data comprise depth dose profiles, including distal and proximal profiles used to configure the Eclipse Ocular Proton Planning system, distal fall-off widths, lateral profiles and penumbrae sizes, as well as output factors as a function of field size, SOBP width, range shifter thickness, snout position, and source-to-surface distance. CONCLUSIONS: We have completed a comprehensive characterization of the beam line. The data will be useful to characterize proton beams in clinical and experimental small-field applications.


Asunto(s)
Ojo/efectos de la radiación , Terapia de Protones , Planificación de la Radioterapia Asistida por Computador/métodos , Método de Montecarlo
7.
Int J Radiat Oncol Biol Phys ; 99(1): 41-50, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28816159

RESUMEN

Pencil-beam scanning (PBS) proton therapy (PT), particularly intensity modulated PT, represents the latest advanced PT technology for treating cancers, including thoracic malignancies. On the basis of virtual clinical studies, PBS-PT appears to have great potential in its ability to tightly tailor the dose to the target while sparing critical structures, thereby reducing treatment-related toxicities, particularly for tumors in areas with complicated anatomy. However, implementing PBS-PT for moving targets has several additional technical challenges compared with intensity modulated photon radiation therapy or passive scattering PT. Four-dimensional computed tomography-based motion management and robust optimization and evaluation are crucial for minimizing uncertainties associated with beam range and organ motion. Rigorous quality assurance is required to validate dose delivery both before and during the course of treatment. Active motion management (eg, breath hold), beam gating, rescanning, tracking, or adaptive planning may be needed for cases involving significant motion or changes in motion or anatomy over the course of treatment.


Asunto(s)
Movimiento , Guías de Práctica Clínica como Asunto , Terapia de Protones/métodos , Radioterapia de Intensidad Modulada/métodos , Neoplasias Torácicas/radioterapia , Contencion de la Respiración , Esófago , Tomografía Computarizada Cuatridimensional , Humanos , Pulmón , Órganos en Riesgo , Mejoramiento de la Calidad , Respiración , Entrenamiento Simulado/métodos , Neoplasias Torácicas/diagnóstico por imagen , Neoplasias Torácicas/patología , Carga Tumoral , Incertidumbre
8.
Int J Part Ther ; 4(2): 26-34, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-31773006

RESUMEN

PURPOSE: The authors aimed to illustrate the potential dose differences to clinical target volumes (CTVs) and organs-at-risk (OARs) volumes after proton adaptive treatment planning was used. PATIENTS AND METHODS: The records of 10 patients with oropharyngeal cancer were retrospectively reviewed. Each patient's treatment plan was generated by using the Eclipse treatment planning system. Verification computed tomography (CT) scan was performed during the fourth week of treatment. Deformable image registrations were performed between the 2 CT image sets, and the CTVs and major OARs were transferred to the verification CT images to generate the adaptive plan. We compared the accumulated doses to CTVs and OARs between the original and adaptive plans, as well as between the adaptive and verification plans to simulate doses that would have been delivered if the adaptive plans were not used. RESULTS: Body contours were different on planning and week-4 verification CTs. Mean volumes of all CTVs were reduced by 4% to 8% (P ≤ .04), and the volumes of left and right parotid glands also decreased (by 11% to 12%, P ≤ .004). Brainstem and oral cavity volumes did not significantly differ (all P ≥ .14). All mean doses to the CTV were decreased for up to 7% (P ≤ .04), whereas mean doses to the right parotid and oral cavity increased from a range of 5% to 8% (P ≤ .03), respectively. CONCLUSION: Verification and adaptive planning should be recommended during the course of proton therapy for patients with head and neck cancer to ensure adequate dose deliveries to the planned CTVs, while safe doses to OARs can be respected.

9.
Int J Radiat Oncol Biol Phys ; 95(1): 505-516, 2016 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-27084663

RESUMEN

Radiation dose escalation has been shown to improve local control and survival in patients with non-small cell lung cancer in some studies, but randomized data have not supported this premise, possibly owing to adverse effects. Because of the physical characteristics of the Bragg peak, proton therapy (PT) delivers minimal exit dose distal to the target volume, resulting in better sparing of normal tissues in comparison to photon-based radiation therapy. This is particularly important for lung cancer given the proximity of the lung, heart, esophagus, major airways, large blood vessels, and spinal cord. However, PT is associated with more uncertainty because of the finite range of the proton beam and motion for thoracic cancers. PT is more costly than traditional photon therapy but may reduce side effects and toxicity-related hospitalization, which has its own associated cost. The cost of PT is decreasing over time because of reduced prices for the building, machine, maintenance, and overhead, as well as newer, shorter treatment programs. PT is improving rapidly as more research is performed particularly with the implementation of 4-dimensional computed tomography-based motion management and intensity modulated PT. Given these controversies, there is much debate in the oncology community about which patients with lung cancer benefit significantly from PT. The Particle Therapy Co-operative Group (PTCOG) Thoracic Subcommittee task group intends to address the issues of PT indications, advantages and limitations, cost-effectiveness, technology improvement, clinical trials, and future research directions. This consensus report can be used to guide clinical practice and indications for PT, insurance approval, and clinical or translational research directions.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/radioterapia , Consenso , Neoplasias Pulmonares/radioterapia , Terapia de Protones/métodos , Carcinoma de Pulmón de Células no Pequeñas/patología , Ensayos Clínicos como Asunto , Humanos , Neoplasias Pulmonares/patología , Movimiento , Tratamientos Conservadores del Órgano , Órganos en Riesgo/efectos de la radiación , Terapia de Protones/economía , Traumatismos por Radiación/prevención & control , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/métodos , Dispersión de Radiación , Carga Tumoral
10.
Med Dosim ; 40(1): 37-43, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25263491

RESUMEN

In proton therapy, passive scattered proton plans use compensators to conform the dose to the distal surface of the planning volume. These devices are custom made from acrylic or wax for each treatment field using either a plunge-drilled or smooth-milled compensator design. The purpose of this study was to investigate if there is a clinical benefit of generating passive scattered proton radiation treatment plans with the smooth compensator design. We generated 4 plans with different techniques using the smooth compensators. We chose 5 sites and 5 patients for each site for the range of dosimetric effects to show adequate sample. The plans were compared and evaluated using multicriteria (MCA) plan quality metrics for plan assessment and comparison using the Quality Reports [EMR] technology by Canis Lupus LLC. The average absolute difference for dosimetric metrics from the plunged-depth plan ranged from -4.7 to +3.0 and the average absolute performance results ranged from -6.6% to +3%. The manually edited smooth compensator plan yielded the best dosimetric metric, +3.0, and performance, + 3.0% compared to the plunged-depth plan. It was also superior to the other smooth compensator plans. Our results indicate that there are multiple approaches to achieve plans with smooth compensators similar to the plunged-depth plans. The smooth compensators with manual compensator edits yielded equal or better target coverage and normal tissue (NT) doses compared with the other smooth compensator techniques. Further studies are under investigation to evaluate the robustness of the smooth compensator design.


Asunto(s)
Neoplasias/radioterapia , Terapia de Protones , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Alta Energía/instrumentación , Diseño de Equipo , Análisis de Falla de Equipo , Humanos , Radioterapia de Alta Energía/métodos , Reproducibilidad de los Resultados , Estudios Retrospectivos , Dispersión de Radiación , Sensibilidad y Especificidad , Resultado del Tratamiento
11.
Phys Med Biol ; 59(13): 3373-88, 2014 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-24874943

RESUMEN

We developed and investigated a positron emission tomography (PET) system for use with on-line (both in-beam and intra-fraction) image-guided adaptive proton therapy applications. The PET has dual rotating depth-of-interaction measurable detector panels by using solid-state photomultiplier (SSPM) arrays and LYSO scintillators. It has a 44 mm diameter trans-axial and 30 mm axial field-of-view (FOV). A 38 mm diameter polymethyl methacrylate phantom was placed inside the FOV. Both PET and phantom axes were aligned with a collimated 179.2 MeV beam. Each beam delivered ∼50 spills (0.5 s spill and 1.5 s inter-spill time, 3.8 Gy at Bragg peak). Data from each beam were acquired with detectors at a given angle. Nine datasets for nine beams with detectors at nine different angles over 180° were acquired for full-tomographic imaging. Each dataset included data both during and 5 min after irradiations. The positron activity-range was measured from the PET image reconstructed from all nine datasets and compared to the results from simulated images. A (22)Na disc-source was also imaged after each beam to monitor the PET system's performance. PET performed well except for slight shifts of energy photo-peak positions (<1%) after each beam, due mainly to the neutron exposure of SSPM that increased the dark-count noise. This minor effect was corrected offline with a shifting 350-650 keV energy window for each dataset. The results show a fast converging of activity-ranges measured by the prototype PET with high sensitivity and uniform resolution. Sub-mm activity-ranges were achieved with minimal 6 s acquisition time and three spill irradiations. These results indicate the feasibility of PET for intra-fraction beam-range verification. Further studies are needed to develop and apply a novel clinical PET system for on-line image-guided adaptive proton therapy.


Asunto(s)
Fantasmas de Imagen , Tomografía de Emisión de Positrones/instrumentación , Terapia de Protones/instrumentación , Radioterapia Guiada por Imagen/instrumentación , Estudios de Factibilidad , Procesamiento de Imagen Asistido por Computador
12.
Phys Med Biol ; 56(24): 7725-35, 2011 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-22085829

RESUMEN

Although Bortfeld's analytical formula is useful for describing Bragg curves, measured data can deviate from the values predicted by the model. Thus, we sought to determine the parameters of a closed analytical expression of multiple Bragg curves for scanning proton pencil beams using a simultaneous optimization algorithm and to determine the minimum number of energies that need to be measured in treatment planning so that complete Bragg curves required by the treatment planning system (TPS) can be accurately predicted. We modified Bortfeld's original analytical expression of Bragg curves to accurately describe the dose deposition resulting from secondary particles. The parameters of the modified analytical expression were expressed as the parabolic cylinder function of the ranges of the proton pencil beams in water. Thirty-nine discrete Bragg curves were measured in our center using a PTW Bragg Peak chamber during acceptance and commission of the scanning beam proton delivery system. The coefficients of parabolic function were fitted by applying a simultaneous optimization algorithm to seven measured curves. The required Bragg curves for 45 energies in the TPS were calculated using our parameterized analytical expression. Finally, the 10 cm width of spread-out Bragg peaks (SOBPs) of beams with maximum energies of 221.8 and 121.2 MeV were then calculated in the TPS and compared with measured data. Compared with Bortfeld's original formula, our modified formula improved fitting of the measured depth dose curves at depths around three-quarters of the maximum range and in the beam entrance region. The parabolic function described the relationship between the parameters of the analytic expression of different energies. The predicted Bragg curves based on the parameters fitted using the seven measured curves accurately described the Bragg curves of proton pencil beams of 45 energies configured in our TPS. When we used the calculated Bragg curves as the input to TPS, the standard deviations of the measured and calculated data points along the 10 cm SOBPs created with proton pencil beams with maximum energies of 221.8 and 121.2 MeV were 1.19% and 1.18%, respectively, using curves predicted by the algorithm generated from the seven measured curves. Our method would be a valuable tool to analyze measured Bragg curves without the need for time-consuming measurements and correctly describe multiple Bragg curves using a closed analytical expression.


Asunto(s)
Algoritmos , Terapia de Protones , Radioterapia Asistida por Computador/métodos , Reproducibilidad de los Resultados , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...