Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 266
Filtrar
1.
Biomacromolecules ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39129463

RESUMEN

The future development of wearable/implantable sensing and medical devices relies on substrates with excellent flexibility, stability, biocompatibility, and self-powered capabilities. Enhancing the energy efficiency and convenience is crucial, and converting external mechanical energy into electrical energy is a promising strategy for long-term advancement. Poly(vinylidene fluoride) (PVDF), known for its piezoelectricity, is an outstanding representative of an electroactive polymer. Ingeniously designed PVDF-based polymers have been fabricated as piezoelectric devices for various applications. Notably, the piezoelectric performance of PVDF-based platforms is determined by their structural characteristics at different scales. This Review highlights how researchers can strategically engineer structures on microscopic, mesoscopic, and macroscopic scales. We discuss advanced research on PVDF-based piezoelectric platforms with diverse structural designs in biomedical sensing, disease diagnosis, and treatment. Ultimately, we try to give perspectives for future development trends of PVDF-based piezoelectric platforms in biomedicine, providing valuable insights for further research.

2.
Nat Commun ; 15(1): 6729, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39112493

RESUMEN

Protein therapeutics are essential in treating various diseases, but their inherent biological instability and short circulatory half-lives in vivo pose challenges. Herein, a quantitative one-pot iterative living polymerization technique is reported towards precision control over the molecular structure and monomer sequence of protein-polymer conjugates, aiming to maximize physicochemical properties and biological functions of proteins. Using this quantitative one-pot iterative living polymerization technique, we successfully develop a series of sequence-controlled protein-multiblock polymer conjugates, enhancing their biostability, pharmacokinetics, cellular uptake, and in vivo biodistribution. All-atom molecular dynamics simulations are performed to disclose the definite sequence-function relationship of the bioconjugates, further demonstrating their sequence-encoded cellular uptake behavior and in vivo biodistribution in mice. Overall, this work provides a robust approach for creating precision protein-polymer conjugates with defined sequences and advanced functions as a promising candidate in disease treatment.


Asunto(s)
Simulación de Dinámica Molecular , Polimerizacion , Polímeros , Animales , Ratones , Polímeros/química , Distribución Tisular , Proteínas/química , Humanos
3.
J Med Chem ; 67(13): 11152-11167, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38896797

RESUMEN

Radionuclide-drug conjugates (RDCs) designed from small molecule or nanoplatform shows complementary characteristics. We constructed a new RDC system with integrated merits of small molecule and nanoplatform-based RDCs. Erlotinib was labeled with 131I to construct the bulk of RDC (131I-ER). Floxuridine was mixed with 131I-ER to develop a hydrogen bond-driving supermolecular RDC system (131I-ER-Fu NPs). The carrier-free 131I-ER-Fu NPs supermolecule not only demonstrated integrated merits of small molecule and nanoplatform-based RDC, including clear structure definition, stable quality control, prolonged circulation lifetime, enhanced tumor specificity and retention, and rapidly nontarget clearance, but also exhibited low biological toxicity and stronger antitumor effects. In vivo imaging also revealed its application for tumor localization of nonsmall cell lung cancer (NSCLC) and screening of patients suitable for epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) therapy. We considered that 131I-ER-Fu NPs showed potentials as an integrated platform for the radiotheranostics of NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico por imagen , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/patología , Humanos , Animales , Ratones , Floxuridina/química , Floxuridina/farmacología , Radioisótopos de Yodo/química , Clorhidrato de Erlotinib/química , Clorhidrato de Erlotinib/farmacología , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Radiofármacos/química , Radiofármacos/farmacología , Línea Celular Tumoral , Distribución Tisular , Ratones Desnudos , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/metabolismo , Ratones Endogámicos BALB C , Femenino
4.
Adv Mater ; 36(33): e2403935, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38889294

RESUMEN

Tissue-specific delivery of oligonucleotide therapeutics beyond the liver remains a key challenge in nucleic acid drug development. To address this issue, exploiting exosomes as a novel carrier has emerged as a promising approach for efficient nucleic acid drug delivery. However, current exosome-based delivery systems still face multiple hurdles in their clinical applications. Herein, this work presents a strategy for constructing a hybrid exosome vehicle (HEV) through a DNA zipper-mediated membrane fusion approach for tissue-specific siRNA delivery. As a proof-of-concept, this work successfully fuses a liposome encapsulating anti-NFKBIZ siRNAs with corneal epithelium cell (CEC)-derived exosomes to form a HEV construct for the treatment of dry eye disease (DED). With homing characteristics inherited from exosomes, the siRNA-bearing HEV can target its parent cells and efficiently deliver the siRNA payloads to the cornea. Subsequently, the NFKBIZ gene silencing significantly reduces pro-inflammatory cytokine secretions from the ocular surface, reshapes its inflammatory microenvironment, and ultimately achieves an excellent therapeutic outcome in a DED mouse model. As a versatile platform, this hybrid exosome with targeting capability and designed therapeutic siRNAs may hold great potential in various disease treatments.


Asunto(s)
Exosomas , Liposomas , Fusión de Membrana , ARN Interferente Pequeño , Exosomas/metabolismo , Exosomas/química , ARN Interferente Pequeño/metabolismo , Animales , Ratones , Liposomas/química , Síndromes de Ojo Seco/terapia , Humanos , Epitelio Corneal/metabolismo , Epitelio Corneal/patología , Silenciador del Gen , Córnea/metabolismo
5.
Angew Chem Int Ed Engl ; : e202408345, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38888253

RESUMEN

Membrane materials that resist nonspecific or specific adsorption are urgently required in widespread practical applications, such as water purification, food processing, and life sciences. In water purification, inevitable membrane fouling not only limits membrane separation performance, leading to a decline in both permeance and selectivity, but also remarkably increases operation requirements, and augments extra maintenance costs and higher energy consumption. In this work, we report a freestanding interfacial polymerization (IP) fabrication strategy for in situ creation of asymmetric block copolymer (BCP) nanofilms with antifouling properties, greatly outperforming the conventional surface post-modification approaches. The resultant free-standing asymmetric BCP nanofilms with highly-dense, highly-hydrophilic polyethylene glycol (PEG) brushes on one side, can be readily formed via a typical IP process of a well-defined double-hydrophilic BCP composed of a highly-efficient antifouling PEG block and a membrane-forming multiamine block. The asymmetric BCP nanofilms have been applied for efficient and sustainable natural water purification, demonstrating extraordinary antifouling capabilities accompanied with superior separation performance far beyond commercial polyamide nanofiltration membranes. The antifouling behaviors of asymmetric BCP nanofilms derived from the combined effect of the hydration layer, electrostatic repulsion and steric hindrance were further elucidated by water flux and fouling resistance in combination with all-atom molecular dynamics (MD) simulation. This work opens up a new avenue for the large-scale and low-cost creation of broad-spectrum, asymmetric membrane materials with diverse functional "defect-free" surfaces in real-world applications.

6.
Invest Ophthalmol Vis Sci ; 65(5): 32, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38771570

RESUMEN

Purpose: To evaluate VEGF-C-induced lymphoproliferation in conjunction with 5-fluorouracil (5-FU) antimetabolite treatment in a rabbit glaucoma filtration surgery (GFS) model. Methods: Thirty-two rabbits underwent GFS and were assigned to four groups (n = 8 each) defined by subconjunctival drug treatment: (a) VEGF-C combined with 5-FU, (b) 5-FU, (c) VEGF-C, (d) and control. Bleb survival, bleb measurements, and IOP were evaluated over 30 days. At the end, histology and anterior segment OCT were performed on some eyes. mRNA was isolated from the remaining eyes for RT-PCR evaluation of vessel-specific markers (lymphatics, podoplanin and LYVE-1; and blood vessels, CD31). Results: Qualitatively and quantitatively, VEGF-C combined with 5-FU resulted in blebs which were posteriorly longer and wider than the other conditions: vs. 5-FU (P = 0.043 for longer, P = 0.046 for wider), vs. VEGF-C (P < 0.001, P < 0.001) and vs. control (P < 0.001, P < 0.001). After 30 days, the VEGF-C combined with 5-FU condition resulted in longer bleb survival compared with 5-FU (P = 0.025), VEGF-C (P < 0.001), and control (P < 0.001). Only the VEGF-C combined with 5-FU condition showed a negative correlation between IOP and time that was statistically significant (r = -0.533; P = 0.034). Anterior segment OCT and histology demonstrated larger blebs for the VEGF-C combined with 5-FU condition. Only conditions including VEGF-C led to increased expression of lymphatic markers (LYVE-1, P < 0.001-0.008 and podoplanin, P = 0.002-0.011). Expression of CD31 was not different between the groups (P = 0.978). Conclusions: Adding VEGF-C lymphoproliferation to standard antimetabolite treatment improved rabbit GFS success and may suggest a future strategy to improve human GFSs.


Asunto(s)
Modelos Animales de Enfermedad , Fluorouracilo , Glaucoma , Presión Intraocular , Trabeculectomía , Factor C de Crecimiento Endotelial Vascular , Animales , Conejos , Fluorouracilo/uso terapéutico , Fluorouracilo/farmacología , Glaucoma/cirugía , Glaucoma/fisiopatología , Glaucoma/tratamiento farmacológico , Factor C de Crecimiento Endotelial Vascular/metabolismo , Trabeculectomía/métodos , Presión Intraocular/fisiología , Antimetabolitos/farmacología , Antimetabolitos/uso terapéutico , Tomografía de Coherencia Óptica , Conjuntiva , ARN Mensajero/genética
7.
Nanoscale ; 16(19): 9406-9411, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38629905

RESUMEN

In the field of contemporary medicine, inflammation has emerged as a significant concern in global public health. Among the current anti-inflammatory strategies, nanozymes possess distinctive advantages and demonstrate unexpected efficacy in combating inflammation. However, the indeterminate structures and limited enzyme-like activity exhibited by most developed nanozymes impede their clinical translation and therapeutic effectiveness. In this paper, we developed a nanozyme derived from a well-defined metal-organic cage (MOC). The oxidized MOC (MOC-O), containing pyridine nitrogen oxide moieties, exhibited effective cascade superoxide dismutase (SOD) and catalase (CAT)-like activities for scavenging reactive oxygen species (ROS). This ROS scavenging ability was confirmed through flow cytometry analysis using DCFH-DA in a hypoxia/reoxygenation (H/R) model, where MOC-O significantly alleviated oxidative stress. Furthermore, the administration of MOC-O resulted in preserved renal function during renal ischemia-reperfusion (I/R) injury due to downregulated oxidative stress levels and reduced cell apoptosis.


Asunto(s)
Antioxidantes , Riñón , Estrés Oxidativo , Especies Reactivas de Oxígeno , Daño por Reperfusión , Superóxido Dismutasa , Daño por Reperfusión/metabolismo , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/patología , Animales , Antioxidantes/química , Antioxidantes/farmacología , Especies Reactivas de Oxígeno/metabolismo , Riñón/metabolismo , Estrés Oxidativo/efectos de los fármacos , Superóxido Dismutasa/metabolismo , Ratones , Apoptosis/efectos de los fármacos , Catalasa/metabolismo , Estructuras Metalorgánicas/química , Estructuras Metalorgánicas/farmacología , Masculino
8.
ACS Appl Mater Interfaces ; 16(13): 16927-16935, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38506726

RESUMEN

Bismuth (Bi) exhibits a high theoretical capacity, excellent electrical conductivity properties, and remarkable interlayer spacing, making it an ideal electrode material for supercapacitors. However, during the charge and discharge processes, Bi is prone to volume expansion and pulverization, resulting in a decline in the capacitance. Deposition of a nonmetal on its surface is considered an effective way to modulate its morphology and electronic structure. Herein, we employed the chemical vapor deposition technique to fabricate Se-decorated Bi nanosheets on a nickel foam (NF) substrate. Various characterizations indicated that the deposition of Se on Bi nanosheets regulated their surface morphology and chemical state, while sustaining their pristine phase structure. Electrochemical tests demonstrated that Se-decorated Bi nanosheets exhibited a 51.1% improvement in capacity compared with pristine Bi nanosheets (1313 F/g compared to 869 F/g at a current density of 5 A/g). The energy density of the active material in an assembled asymmetric supercapacitor could reach 151.2 Wh/kg at a power density of 800 W/kg. These findings suggest that Se decoration is a promising strategy to enhance the capacity of the Bi nanosheets.

9.
Bioact Mater ; 37: 30-50, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38515608

RESUMEN

As an endogenous signaling molecule, carbon monoxide (CO) has emerged as an increasingly promising option regarding as gas therapy due to its positive pharmacological effects in various diseases. Owing to the gaseous nature and potential toxicity, it is particularly important to modulate the CO release dosages and targeted locations to elucidate the biological mechanisms of CO and facilitate its clinical applications. Based on these, diverse CO-releasing molecules (CORMs) have been developed for controlled release of CO in biological systems. However, practical applications of these CORMs are limited by several disadvantages including low stability, poor solubility, weak releasing controllability, random diffusion, and potential toxicity. In light of rapid developments and diverse advantages of nanomedicine, abundant nanomaterials releasing CO in controlled ways have been developed for therapeutic purposes across various diseases. Due to their nanoscale sizes, diversified compositions and modified surfaces, vast CO-releasing nanomaterials (CORNMs) have been constructed and exhibited controlled CO release in specific locations under various stimuli with better pharmacokinetics and pharmacodynamics. In this review, we present the recent progress in CORNMs according to their compositions. Following a concise introduction to CO therapy, CORMs and CORNMs, the representative research progress of CORNMs constructed from organic nanostructures, hybrid nanomaterials, inorganic nanomaterials, and nanocomposites is elaborated. The basic properties of these CORNMs, such as active components, CO releasing mechanisms, detection methods, and therapeutic applications, are discussed in detail and listed in a table. Finally, we explore and discuss the prospects and challenges associated with utilizing nanomaterials for biological CO release.

10.
Front Bioeng Biotechnol ; 12: 1364975, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38415186

RESUMEN

Cisplatin (CDDP) is widely used as one kind of chemotherapy drugs in cancer treatment. It functions by interacting with DNA, leading to the DNA damage and subsequent cellular apoptosis. However, the presence of intracellular PARP1 diminishes the anticancer efficacy of CDDP by repairing DNA strands. Olaparib (OLA), a PARP inhibitor, enhances the accumulation of DNA damage by inhibiting its repair. Therefore, the combination of these two drugs enhances the sensitivity of CDDP chemotherapy, leading to improved therapeutic outcomes. Nevertheless, both drugs suffer from poor water solubility and limited tumor targeting capabilities. To address this challenge, we proposed the self-assembly of two drugs, CDDP and OLA, through hydrogen bonding to form stable and uniform nanoparticles. Self-assembled nanoparticles efficiently target tumor cells and selectively release CDDP and OLA within the acidic tumor microenvironment, capitalizing on their respective mechanisms of action for improved anticancer therapy. In vitro studies demonstrated that the CDDP-OLA NPs are significantly more effective than CDDP/OLA mixture and CDDP at penetrating cancer cells and suppressing their growth. In vivo studies revealed that the nanoparticles specifically accumulated at the tumor site and enhanced the therapeutic efficacy without obvious adverse effects. This approach holds great potential for enhancing the drugs' water solubility, tumor targeting, bioavailability, and synergistic anticancer effects while minimizing its toxic side effects.

11.
Chempluschem ; 89(6): e202300782, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38345544

RESUMEN

Photopolymerizations have garnered significant attention in polymer science due to their low polymerization temperature, high production efficiency, environmental friendliness, and spatial controllability. Despite these merits, the poor penetration and severe chemical damage from ultraviolet/visible (UV/Vis) light resources pose significant barriers to their success in conventional photopolymerizations. A recent breakthrough involving the utilization of near-infrared (NIR) laser with long wavelength has been exploited for diverse applications. With the combination of a NIR photosensitizer (PS), NIR-induced photopolymerizations have been successfully developed to alleviate the challenges in conventional methods. The enhancement of penetration depth and safety of NIR-induced photopolymerizations can contribute significantly to improving the efficiency of polymerization for production of intricate structures across various scales. In this concept, the typical types of PSs and polymerization mechanisms (PMs) within the NIR-induced photopolymerization systems have been classified in detail. Additionally, the applications of various polymers achieved by NIR-induced photopolymerizations are summarized. Furthermore, research directions and future challenges of this field are also discussed comprehensively.

12.
Angew Chem Int Ed Engl ; 63(4): e202315282, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38032360

RESUMEN

Recently, therapeutic cancer vaccines have emerged as promising candidates for cancer immunotherapy. Nevertheless, their efficacies are frequently impeded by challenges including inadequate antigen encapsulation, insufficient immune activation, and immunosuppressive tumor microenvironment. Herein, we report a three-in-one hydrogel assembled by nucleic acids (NAs) that can serve as a vaccine to in situ trigger strong immune response against cancer. Through site-specifically grafting the chemodrug, 7-ethyl-10-hydroxycamptothecin (also known as SN38), onto three component phosphorothioate (PS) DNA strands, a Y-shaped motif (Y-motif) with sticky ends is self-assembled, at one terminus of which an unmethylated cytosine-phosphate-guanine (CpG) segment is introduced as an immune agonist. Thereafter, programmed cell death ligand-1 (PD-L1) siRNA that performs as immune checkpoint inhibitor is designed as a crosslinker to assemble with the CpG- and SN38-containing Y-motif, resulting in the formation of final NA hydrogel vaccine. With three functional agents inside, the hydrogel can remarkably induce the immunogenic cell death to enhance the antigen presentation, promoting the dendritic cell maturation and effector T lymphocyte infiltration, as well as relieving the immunosuppressive tumor environment. When inoculated twice at tumor sites, the vaccine demonstrates a substantial antitumor effect in melanoma mouse model, proving its potential as a general platform for synergistic cancer immunotherapy.


Asunto(s)
Melanoma , Ácidos Nucleicos , Vacunas , Animales , Ratones , Hidrogeles/metabolismo , Ácidos Nucleicos/metabolismo , Células Dendríticas/metabolismo , Inmunoterapia , Vacunación , Microambiente Tumoral , Línea Celular Tumoral , Antígeno B7-H1/metabolismo
13.
Angew Chem Int Ed Engl ; 63(5): e202318441, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38098269

RESUMEN

The construction of acyclic, non-adjacent 1,3-stereogenic centers, prevalent motifs in drugs and bioactive molecules, has been a long-standing synthetic challenge due to acyclic nucleophiles being distant from the chiral environment. In this study, we successfully synthesized highly valuable 1,2-bis(boronic) esters featuring acyclic and nonadjacent 1,3-stereocenters. Notably, this reaction selectively produces migratory coupling products rather than alternative deborylative allylation or direct allylation byproducts. This approach introduces a new activation mode for selective transformations of gem-diborylmethane in asymmetric catalysis. Additionally, we found that other gem-diborylalkanes, previously challenging due to steric hindrance, also successfully participated in this reaction. The incorporation of 1,2-bis(boryl)alkenes facilitated the diversification of the alkenyl and two boron moieties in our target compounds, thereby enabling access to a broad array of versatile molecules. DFT calculations were performed to elucidate the reaction mechanism and shed light on the factors responsible for the observed excellent enantioselectivity and diastereoselectivity. These were determined to arise from ligand-substrate steric repulsions in the syn-addition transition state.

14.
Nanoscale ; 15(48): 19475-19479, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38015155

RESUMEN

The construction of chiral nanoobjects with atomically precise nanostructures has attracted much more attention in the past decades. However, this field is still in its early stages. We designed and synthesized a series of chiral ligands containing the binaphthalene moiety and isophthalate module. Then, four chiral metal-organic cages (MOCs) were obtained through the coordination between isophthalate modules and copper ions. These chiral MOCs exhibit discrete, uniform and stable structures, good solubility and photoluminescence behaviors.

15.
Langmuir ; 39(44): 15740-15747, 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37901940

RESUMEN

Ring-opening metathesis polymerization (ROMP) is a powerful method to graft various types of polymer chains to a given surface. While surface-initiated ROMP (SI-ROMP) serves as an efficient tool for surface modification and is therefore widely reported, the method requires grafting (1) the olefin substrate and (2) the metathesis catalyst to the surface prior to the polymerization with multiple synthetic and work up steps. To overcome this difficulty, we proposed the use of the chain-transfer reaction as an alternative method for surface modification. Terminal olefins are grafted to the surface without the need to graft the metathesis catalysts, and polymers with olefin backbones are polymerized and grafted simultaneously via both ROMP and chain transfer (cross-metathesis between olefins from backbones and surfaces). Compared to SI-ROMP, this surface-chain transfer ROMP (SC-ROMP) method avoids grafting the catalyst and growing polymer chains from the surface and could be achieved in a single step. Various types of surfaces like carbon nanotubes, carbon fibers, graphene nanosheets, and silica microspheres are used for demonstration. We envision that this work could bring a convenient and effective solution to surface modification via ROMP.

16.
ACS Appl Mater Interfaces ; 15(35): 41817-41827, 2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37622994

RESUMEN

To achieve efficient gene delivery in vitro or in vivo, nonviral vectors should have excellent biostability across cellular and tissue barriers and also smart stimuli responsiveness toward controlled release of therapeutic genes into the cell nucleus. However, it remains a key challenge to effectively combine the biostability of covalent polymers with the stimuli responsiveness of noncovalent polymers into one nonviral vehicle. In this work, we report the construction of a kind of cationic supramolecular block copolymers (SBCs) through noncovalent polymerization of ß-cyclodextrin/azobenzene-terminated pentaethylenehexamine (DMA-Azo-PEHA-ß-CD) in aqueous media using ß-CD-monosubstituted poly(ethylene glycol) (PEG-ß-CD) as a supramolecular initiator. The resultant SBC exhibits superior biostability, biocompatibility, and light/pH dual-responsive characteristics, and it also demonstrates efficient plasmid DNA condensation capacity and the ability to rapidly release plasmid DNA into cells driven by visible light (450 nm). Eventually, this SBC-based delivery system demonstrates visible light-induced enhancement of gene delivery in both COS-7 and HeLa cells. We anticipate that this work provides a facile and robust strategy to enhance gene delivery in vitro or in vivo via visible light-guided manipulation of genes, further achieving safe, highly efficient, targeting gene therapy for cancer.


Asunto(s)
Técnicas de Transferencia de Gen , Luz , Polímeros , Células HeLa , Humanos , Polietilenglicoles , Células COS , Animales , Chlorocebus aethiops , Células MCF-7
17.
Adv Healthc Mater ; 12(28): e2301310, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37531236

RESUMEN

Uncontrollable blood loss poses fatality risks and most recently developed sealants still share common limitations on controversial components, degradability, mechanical strength or gelation time. Herein, series of injectable sealants based on silk fibroin (SF) is developed. Random coil/ß-sheet conformation transition in SF is achieved by forming dendritic intermediates under induction of the structurally compatible and chemically complementary assembly peptide (Ac-KAEA-KAEA-KAEA-KAEA-NH2 , KA16 ). A ratio of 1:5 (KA-SF-15) shown an accelerating gelation process (≈12 s) and enhanced mechanical strength at physiological conditions. The interweaved nanofibers effectively impeded the bleeding within 30 s and no obvious adverse effects are observed. The supramolecular interactions and in vivo degradation benefit the inflammatory host cells infiltration and cytokines diffusion. Without any exogenous factors, the increased expression of VEGF and PDGF led to a positive feedback regulation on fibroblasts and vascular endothelial cell growth/proliferation and promoted the wound healing. These findings indicated the few assembly-peptide can accelerate fibroin gelation transition at a limited physiological condition, and the injectable amino acid-based sealants show obvious advantages on biocompatibility, degradability, rapid gelation and matched strength, with strong potential to act as next generation of biomedical materials.


Asunto(s)
Fibroínas , Fibroínas/química , Cicatrización de Heridas , Hidrogeles/química , Proliferación Celular , Péptidos , Seda/química
18.
Angew Chem Int Ed Engl ; 62(32): e202307447, 2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37316685

RESUMEN

Asymmetric cross-couplings based on 1,2-carbon migration from B-ate complexes have been developed efficiently to access valuable organoboronates. However, enantioselective reactions triggered by 1,2-boron shift have remained to be unaddressed synthetic challenge. Here, Ir-catalyzed asymmetric allylic alkylation enabled by 1,2-boron shift was developed. In this reaction, we disclosed that excellent enantioselectivities were achieved through an interesting dynamic kinetic resolution (DKR) process of allylic carbonates at the elevated temperature. Notably, the highly valuable (bis-boryl)alkenes have enabled an array of diversifications to access versatile molecules. Extensive experimental and computational studies were conducted to elucidate the reaction mechanism of DKR process and clarify the origin of excellent enantioselectivities.

19.
Carbohydr Polym ; 317: 121048, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37364948

RESUMEN

Imaging and tracking biological targets or processes play an important role in revealing molecular mechanisms and disease states. Bioimaging via optical, nuclear, or magnetic resonance techniques enables high resolution, high sensitivity, and high depth imaging from the whole animal down to single cells via advanced functional nanoprobes. To overcome the limitations of single-modality imaging, multimodality nanoprobes have been engineered with a variety of imaging modalities and functionalities. Polysaccharides are sugar-containing bioactive polymers with superior biocompatibility, biodegradability, and solubility. The combination of polysaccharides with single or multiple contrast agents facilitates the development of novel nanoprobes with enhanced functions for biological imaging. Nanoprobes constructed with clinically applicable polysaccharides and contrast agents hold great potential for clinical translations. This review briefly introduces the basics of different imaging modalities and polysaccharides, then summarizes the recent progress of polysaccharide-based nanoprobes for biological imaging in various diseases, emphasizing bioimaging with optical, nuclear, and magnetic resonance techniques. The current issues and future directions regarding the development and applications of polysaccharide nanoprobes are further discussed.


Asunto(s)
Medios de Contraste , Polímeros , Animales , Imagen por Resonancia Magnética , Polisacáridos , Colorantes Fluorescentes
20.
J Phys Chem B ; 127(24): 5379-5388, 2023 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-37294640

RESUMEN

With the development of solid-phase synthesis and DNA nanotechnology, DNA-based drug delivery systems have seen large advancements over the past decades. By combining various drugs (small-molecular drugs, oligonucleotides, peptides, and proteins) with DNA technology, drug-grafted DNA has demonstrated great potential as a promising platform in recent years, in which complementary properties of both components have been discovered; for instance, the synthesis of amphiphilic drug-grafted DNA has enabled the production of DNA nanomedicines for gene therapy and chemotherapy. Through the design of linkages between drug and DNA parts, stimuli-responsiveness can be instilled, which has boosted the application of drug-grafted DNA in various biomedical applications such as cancer therapy. This review discusses the progress of various drug-grafted DNA therapeutic agents, exploring the synthetic techniques and anticancer applications afforded through the combination of drug and nucleic acids.


Asunto(s)
ADN , Neoplasias , Humanos , Preparaciones Farmacéuticas , ADN/química , Sistemas de Liberación de Medicamentos/métodos , Nanotecnología/métodos , Neoplasias/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA