Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 14(17)2021 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-34501152

RESUMEN

In this paper, the effects of an aging treatment on the corrosion resistance/mechanism of a tensile deformed Al-Cu-Mn-Fe-Zr alloy are investigated. The impedance magnitude and polarization resistance increase, while the corrosion current decreases with the increased aging time and temperature. The discontinuously-distributed precipitates and precipitation-free zone, which can cut the corrosion channels, appear at grain boundaries when the temperature is relatively high and the aging time is relatively long. They can improve the corrosion resistance. Additionally, the intergranular and pitting corrosion are the main mechanisms. The intergranular corrosion is likely to occur in an under-aged alloy. This is because the potential difference between the grain boundaries and grains is high, due to the segregation of Cu atoms. When the aging degree is increased, the grain boundary precipitates reduce the potential difference, and the intragranular precipitates make the surrounding matrix prone to dissolution. As such, the pitting corrosion is likely to occur in the over-aged alloys.

2.
Materials (Basel) ; 13(11)2020 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-32486119

RESUMEN

Deformation behavior and precipitation features of an Al-Cu alloy are investigated using uniaxial tensile tests at intermediate temperatures. It is found that the true stress drops with the decreased strain rate or the increased deformation temperature. The number of substructures and the degree of grain elongation decrease with the raised temperature or the decreased strain rate. At high temperatures or low strain rates, some dynamic recrystallized grains can be found. The type of precipitates is influenced by the heating process before hot tensile deformation. The content and size of precipitates increase during tensile deformation at intermediate temperatures. As the temperature increases over 200 °C, the precipitation process (Guinier Preston zone (G.P. zones)→θ'' phase→θ' phase) is enhanced, resulting in increased contents of θ'' and θ' phases. However, θ'' and θ' phases prefer to precipitate along the {020}Al direction, resulting in an uneven distribution of phases. Considering the flow softening degree and the excessive heterogeneous precipitation of θ'' and θ' phases during hot deformation, the reasonable strain rate and temperature are about 0.0003 s-1 and 150 °C, respectively.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...