Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Pain ; : 104504, 2024 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-38442838

RESUMEN

The dorsal spinal cord is crucial for the transmission and modulation of multiple somatosensory modalities, such as itch, pain, and touch. Despite being essential for the well-being and survival of an individual, itch and pain, in their chronic forms, have increasingly been recognized as clinical problems. Although considerable progress has been made in our understanding of the neurochemical processing of nociceptive and chemical itch sensations, the neural substrate that is crucial for mechanical itch processing is still unclear. Here, using genetic and functional manipulation, we identified a population of spinal neurons expressing neuromedin U receptor 2 (Nmur2+) as critical elements for mechanical itch. We found that spinal Nmur2+ neurons are predominantly excitatory neurons, and are enriched in the superficial laminae of the dorsal horn. Pharmacogenetic activation of cervical spinal Nmur2+ neurons evoked scratching behavior. Conversely, the ablation of these neurons using a caspase-3-based method decreased von Frey filament-induced scratching behavior without affecting responses to other somatosensory modalities. Similarly, suppressing the excitability of cervical spinal Nmur2+ neurons via the overexpression of functional Kir2.1 potassium channels reduced scratching in response to innocuous mechanical stimuli, but not to pruritogen application. At the lumbar level, pharmacogenetic activation of these neurons evoked licking and lifting behaviors. However, ablating these neurons did not affect the behavior associated with acute pain. Thus, these results revealed the crucial role of spinal Nmur2+ neurons in mechanical itch. Our study provides important insights into the neural basis of mechanical itch, paving the way for developing novel therapies for chronic itch. PERSPECTIVE: Excitatory Nmur2+ neurons in the superficial dorsal spinal cord are essential for mechanical but not chemical itch information processing. These spinal Nmur2+ neurons represent a potential cellular target for future therapeutic interventions against chronic itch. Spinal and supraspinal Nmur2+ neurons may play different roles in pain signal processing.

2.
Front Cell Neurosci ; 17: 1276506, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38188669

RESUMEN

Accaumulating studies focus on the effects of C3-positive A1-like phenotypes and S100A10-positive A2-like phenotypes of reactive astrocytes on spinal cord injury (SCI), however the origins and dynamic changes of C3- and S100A10-positive reactive astrocytes after SCI remain poorly understood. Through transgenic mice and lineage tracing, we aimed to determine the origins of C3- and S100A10-positive reactive astrocytes. Meanwhile, the distribution and dynamic changes in C3- and S100A10-positive reactive astrocytes were also detected in juvenile and adult SCI mice models and cultured astrocytes. Combing with bulk RNA sequencing (RNA-seq), single-cell RNA sequencing (scRNA-seq) and bioinformatic analysis, we further explored the dynamic transcripts changes of C3- and S100A10-positive reactive astrocytes after SCI. We confirmed that resident astrocytes produced both C3- and S100A10-positive reactive astrocytes, whereas ependymal cells regenerated only S100A10-positive reactive astrocytes in lesion area. Importantly, C3-positive reactive astrocytes were predominantly activated in adult SCI mice, while S100A10-positive reactive astrocytes were hyperactivated in juvenile mice. Furthermore, we observed that C3- and S100A10-positive reactive astrocytes had a dynamic transformation process at different time in vitro and vivo, and a majority of intermediate states of C3- and S100A10-positive reactive astrocytes were found during transformation. RNA-seq and scRNA-seq results further confirmed that the transcripts of C3-positive reactive astrocytes and their lipid toxicity were gradually increased with time and age. In contrast, S100A10-positive reactive astrocytes transcripts increased at early time and then gradually decreased after SCI. Our results provide insight into the origins and dynamic changes of C3- and S100A10-positive reactive astrocytes after SCI, which would be valuable resources to further target C3- and S100A10-positive reactive astrocytes after SCI.

3.
Adv Sci (Weinh) ; 8(11): e2003897, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34105295

RESUMEN

Molecular heterogeneity of hepatobiliary tumor including intertumoral and intratumoral disparity always leads to drug resistance. Here, seven hepatobiliary tumor organoids are generated to explore heterogeneity and evolution via single-cell RNA sequencing. HCC272 with high status of epithelia-mesenchymal transition proves broad-spectrum drug resistance. By examining the expression pattern of cancer stem cells markers (e.g., PROM1, CD44, and EPCAM), it is found that CD44 positive population may render drug resistance in HCC272. UMAP and pseudo-time analysis identify the intratumoral heterogeneity and distinct evolutionary trajectories, of which catenin beta-1 (CTNNB1), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and nuclear paraspeckle assembly transcript 1 (NEAT1) advantage expression clusters are commonly shared across hepatobiliary organoids. CellphoneDB analysis further implies that metabolism advantage organoids with enrichment of hypoxia signal upregulate NEAT1 expression in CD44 subgroup and mediate drug resistance that relies on Jak-STAT pathway. Moreover, metabolism advantage clusters shared in several organoids have similar characteristic genes (GAPDH, NDRG1 (N-Myc downstream regulated 1), ALDOA, and CA9). The combination of GAPDH and NDRG1 is an independent risk factor and predictor for patient survival. This study delineates heterogeneity of hepatobiliary tumor organoids and proposes that the collaboration of intratumoral heterogenic subpopulations renders malignant phenotypes and drug resistance.


Asunto(s)
Enfermedades del Sistema Digestivo/genética , Neoplasias Gastrointestinales/genética , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/genética , ARN Largo no Codificante/genética , beta Catenina/genética , Antígenos de Neoplasias/genética , Anhidrasa Carbónica IX/genética , Proteínas de Ciclo Celular/genética , Enfermedades del Sistema Digestivo/tratamiento farmacológico , Enfermedades del Sistema Digestivo/patología , Resistencia a Antineoplásicos/genética , Transición Epitelial-Mesenquimal/genética , Fructosa-Bifosfato Aldolasa/genética , Neoplasias Gastrointestinales/tratamiento farmacológico , Neoplasias Gastrointestinales/patología , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Receptores de Hialuranos/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Quinasas Janus/genética , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Organoides/efectos de los fármacos , Organoides/metabolismo , Organoides/patología , RNA-Seq , Factores de Transcripción STAT/genética , Análisis de la Célula Individual , Transcriptoma/genética
4.
Elife ; 92020 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-32519950

RESUMEN

Mu-opioid receptors (MORs) are crucial for analgesia by both exogenous and endogenous opioids. However, the distinct mechanisms underlying these two types of opioid analgesia remain largely unknown. Here, we demonstrate that analgesic effects of exogenous and endogenous opioids on inflammatory pain are mediated by MORs expressed in distinct subpopulations of neurons in mice. We found that the exogenous opioid-induced analgesia of inflammatory pain is mediated by MORs in Vglut2+ glutamatergic but not GABAergic neurons. In contrast, analgesia by endogenous opioids is mediated by MORs in GABAergic rather than Vglut2+ glutamatergic neurons. Furthermore, MORs expressed at the spinal level is mainly involved in the analgesic effect of morphine in acute pain, but not in endogenous opioid analgesia during chronic inflammatory pain. Thus, our study revealed distinct mechanisms underlying analgesia by exogenous and endogenous opioids, and laid the foundation for further dissecting the circuit mechanism underlying opioid analgesia.


Asunto(s)
Analgésicos Opioides/uso terapéutico , Inflamación/complicaciones , Neuronas/metabolismo , Dolor/tratamiento farmacológico , Dolor/etiología , Receptores Opioides mu/metabolismo , Animales , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Morfina/farmacología , Receptores Opioides mu/genética , Tamoxifeno/farmacología , Proteína 2 de Transporte Vesicular de Glutamato/genética , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/genética , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/metabolismo
5.
Theranostics ; 10(12): 5384-5397, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32373219

RESUMEN

Rationale: The existence of primary and acquired drug resistance is the main obstacle for the effect of multi-kinase inhibitor sorafenib and regorafenib in advanced hepatocellular carcinoma (HCC). However, plenty of patients did not significantly benefit from sorafenib treatment and little is known about the mechanism of drug resistance. Methods: Laser capture microdissection was used to acquire matched normal liver and tumor tissues on formalin-fixed paraffin-embedded specimens collected before sorafenib therapy from the first surgery of 119 HCC patients. Ultra-deep sequencing (~1000×) targeting whole exons of 440 genes in microdissected specimens and siRNA screen in 7 cell lines were performed to find mutations associated with differential responses to sorafenib. Patient-derived xenograft models were employed to determine the role of TP53 in response to sorafenib. Lentiviruses harboring wild-type and c.G52C-mutant OCT4 were applied to explore the function of OCT4 in resistance to sorafenib. ChIP-PCR assay for analysis of OCT4 transcriptional activity was performed to explore the affinity with the KITLG promoter. Statistical analyses were used to associate levels of p53 and OCT4 with tumor features and patient outcomes. Results: Total 1,050 somatic mutations and 26 significant driver genes were identified. SiRNA screening in 7 HCC cell lines was further performed to identify mutations associated with differential responses to sorafenib. A recurrent nonsynonymous mutation c.G52C in OCT4 (OCT4mut) was strongly associated with good response to sorafenib, whereas the stop-gain mutation in TP53 showed the opposite outcome both in vitro and in vivo. OCT4wt-induced stem cell factor (encoded by KITLG gene, SCF) expression and cross-activation of c-KIT/FLT3-BRAF signals were identified indispensably for sorafenib resistance, which could be reversed by the combination of c-KIT tyrosine kinase inhibitors or neutralizing antibody against SCF. Mechanistically, an OCT4 binding site in upstream of KITLG promoter was identified with a higher affinity to wildtype of OCT4 rather than G52C-mutant form, which is indispensable for OCT4-induced expression of KITLG and sorafenib resistance. Conclusion: Our study reported a novel somatic mutation in OCT4 (c.G52C) responsible for the sorafenib effect, and also shed new light on the treatment of HCC through the combination of specific tyrosine kinase inhibitors according to individual genetic patterns.


Asunto(s)
Antineoplásicos/uso terapéutico , Carcinoma Hepatocelular/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológico , Sorafenib/uso terapéutico , Carcinoma Hepatocelular/genética , Proliferación Celular/genética , Humanos , Neoplasias Hepáticas/genética , Masculino , Mutación/genética , Factor 3 de Transcripción de Unión a Octámeros/genética , Compuestos de Fenilurea/uso terapéutico , Piridinas/uso terapéutico , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
6.
Theranostics ; 9(12): 3526-3540, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31281495

RESUMEN

Circular RNA (circRNA) possesses great pre-clinical diagnostic and therapeutic potentials in multiple cancers. It has been reported playing roles in multiple malignant behaviors including proliferation, migration, metastasis and chemoresistance. However, the underlying correlation between circRNAs and cancer stem cells (CSCs) has not been reported yet. Methods: circZKSCAN1 level was detected in HCC tissue microarrays to clarify its prognostic values. Gain and loss function experiments were applied to investigate the role of circZKSCAN1 in HCC stemness. Bioinformatic analysis was used to predict the possible downstream RNA binding protein and further RNA immunoprecipitation sequencing was carried out to identify the RBP-regulated genes. Results: The absence of circZKSCAN1 endowed several malignant properties including cancer stemness and tightly correlated with worse overall and recurrence-free survival rate in HCC. Bioinformatics analysis and RNA immunoprecipitation-sequencing (RIP-seq) results revealed that circZKSCAN1 exerted its inhibitive role by competitively binding FMRP, therefore, block the binding between FMRP and ß-catenin-binding protein-cell cycle and apoptosis regulator 1 (CCAR1) mRNA, and subsequently restrain the transcriptional activity of Wnt signaling. In addition, RNA-splicing protein Quaking 5 was found downregulated in HCC tissues and responsible for the reduction of circZKSCAN1. Conclusion: Collectively, this study revealed the mechanisms underlying the regulatory role of circZKSCAN1 in HCC CSCs and identified the newly discovered Qki5-circZKSCAN1-FMRP-CCAR1-Wnt signaling axis as a potentially important therapeutic target for HCC treatment.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Carcinoma Hepatocelular/fisiopatología , Proteínas de Ciclo Celular/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Células Madre Neoplásicas/metabolismo , ARN Circular/metabolismo , Anciano , Biología Computacional , Femenino , Humanos , Inmunoprecipitación , Masculino , Análisis por Micromatrices , Persona de Mediana Edad , Unión Proteica , ARN Circular/análisis , Proteínas de Unión al ARN/metabolismo , Análisis de Secuencia de ADN , Vía de Señalización Wnt
8.
Hepatology ; 67(3): 1071-1087, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-28960380

RESUMEN

It is urgent that the means to improve liver regeneration (LR) be found, while mitigating the concurrent risk of hepatocarcinogenesis (HCG). Nuclear receptor corepressor 1 (NCoR1) is a co-repressor of nuclear receptors, which regulates the expression level of metabolic genes; however, little is known about its potential contribution for LR and HCG. Here, we found that liver-specific NCoR1 knockout in mice (NCoR1Δhep ) dramatically enhances LR after partial hepatectomy and, surprisingly, blocks the process of diethylnitrosamine (DEN)-induced HCG. Both RNA-sequencing and metabolic assay results revealed improved expression of Fasn and Acc2 in NCoR1Δhep mice, suggesting the critical role of de novo fatty acid synthesis (FAS) in LR. Continual enhanced de novo FAS in NCoR1Δhep mice resulted in overwhelmed adenosine triphosphate ATP and nicotinamide adenine dinucleotide phosphate (NADPH) consumption and increased mitochondrial reactive oxygen species production, which subsequently attenuated HCG through inducing apoptosis of hepatocytes at an early stage after DEN administration. CONCLUSION: NCoR1 functions as a negative modulator for hepatic de novo FAS and mitochondria energy adaptation, playing distinct roles in regeneration or carcinogenesis. (Hepatology 2018;67:1071-1087).


Asunto(s)
Carcinogénesis/metabolismo , Lipogénesis/genética , Regeneración Hepática/genética , Hígado/metabolismo , Co-Represor 1 de Receptor Nuclear/metabolismo , Animales , Apoptosis , Proliferación Celular/genética , Ácidos Grasos/biosíntesis , Hepatocitos/metabolismo , Hígado/patología , Ratones , Ratones Noqueados
10.
Sci China Life Sci ; 60(6): 575-584, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28547581

RESUMEN

On the global scale, hepatitis B virus (HBV) infection is the main cause of hepatocellular carcinoma (HCC) especially in regions of Asia where HBV infection is endemic. Epidemiological studies show that the incidence of inflammation-driven HCC in males is three times as high as in females. Recent studies suggest that sex hormones have a crucial role in the pathogenesis and development of HBV-induced HCC. We found that the estrogen/androgen signaling pathway is associated with decreased/increased transcription and replication of HBV genes and can promote the development of HBV infections by up/downregulating HBV RNA transcription and inflammatory cytokines levels, which in turn slow down the progression of HBV-induced HCC. Additionally, sex hormones can also affect HBV-related HCC by inducing epigenetic changes. The evidence that both morphology and function of the human liver are affected by sex hormones was found over 60 years ago. However, the underlying molecular mechanism largely remains to be elucidated. This review focuses mainly on the molecular mechanisms behind the sex difference in HCC associated with HBV and other factors. In addition, several potential treatment and therapeutic strategies for inflammation-driven HCC will be introduced in this review.


Asunto(s)
Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Factores Sexuales , Anciano , Femenino , Hormonas Esteroides Gonadales/fisiología , Humanos , Masculino , Persona de Mediana Edad
11.
Acta Pharmacol Sin ; 38(5): 614-622, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28344323

RESUMEN

Sorafenib is an oral multikinase inhibitor that suppresses tumor cell proliferation and angiogenesis and promotes tumor cell apoptosis. It was approved by the FDA for the treatment of advanced renal cell carcinoma in 2006, and as a unique target drug for advanced hepatocellular carcinoma (HCC) in 2007. Sorafenib can significantly extend the median survival time of patients but only by 3-5 months. Moreover, it is associated with serious adverse side effects, and drug resistance often develops. Therefore, it is of great importance to explore the mechanisms underlying sorafenib resistance and to develop individualized therapeutic strategies for coping with these problems. Recent studies have revealed that in addition to the primary resistance, several mechanisms are underlying the acquired resistance to sorafenib, such as crosstalk involving PI3K/Akt and JAK-STAT pathways, the activation of hypoxia-inducible pathways, and epithelial-mesenchymal transition. Here, we briefly describe the function of sorafenib, its clinical application, and the molecular mechanisms for drug resistance, especially for HCC patients.


Asunto(s)
Antineoplásicos/uso terapéutico , Carcinoma Hepatocelular/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológico , Niacinamida/análogos & derivados , Compuestos de Fenilurea/uso terapéutico , Inhibidores de Proteínas Quinasas/uso terapéutico , Resistencia a Antineoplásicos , Transición Epitelial-Mesenquimal , Humanos , Niacinamida/administración & dosificación , Niacinamida/uso terapéutico , Compuestos de Fenilurea/administración & dosificación , Sorafenib
12.
Gastroenterology ; 152(5): 1187-1202, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28065789

RESUMEN

BACKGROUND & AIMS: Choline kinase α (CHKA) catalyzes conversion of choline to phosphocholine and can contribute to carcinogenesis. Little is known about the role of CHKA in the pathogenesis of hepatocellular carcinoma (HCC). METHODS: We performed whole-exome and transcriptome sequence analyses of 9 paired HCC and non-tumor-adjacent tissues. We performed tissue chip analyses of 120 primary HCC and non-tumor-adjacent tissues from patients who received surgery in Shanghai, China from January 2006 through December 2009; 48 sets of specimens (HCC and non-tumor-adjacent tissues) were also analyzed. CHKA gene copy number was quantified and findings were validated by quantitative reverse transcription polymerase chain reaction analysis. CHKA messenger RNA and protein levels were determined by polymerase chain reaction, immunohistochemical, and immunoblot analyses. CHKA was examined in 2 hepatocyte cell lines and 7 HCC-derived cell lines, and knocked down with small interfering RNAs in 3 HCC cell lines. Cells were analyzed in proliferation, wound healing, migration, and invasion assays. Cells were injected into tail veins of mice and tumor growth and metastasis were quantified. Immunoprecipitation and immunofluorescence assays were conducted to determine interactions between CHKA and the epidermal growth factor receptor (EGFR) and the mechanistic target of rapamycin complex 2. RESULTS: Levels of CHKA messenger RNA were frequently increased in HCC tissues compared with nontumor tissues; increased expression was associated with amplification at the CHKA loci. Tumors that expressed high levels of CHKA had more aggressive phenotypes, and patients with these tumors had shorter survival times after surgery compared to patients whose tumors expressed low levels of CHKA. HCC cell lines that stably overexpressed CHKA had higher levels of migration and invasion than control HCC cells, and formed larger xenograft tumors with more metastases in mice compared to HCC cells that did not overexpress CHKA. CHKA was required for physical interaction between EGFR and mechanistic target of rapamycin complex 2. This complex was required for HCC cells to form metastatic xenograft tumors in mice and to become resistant to EGFR inhibitors. CONCLUSIONS: We found levels of CHKA to be increased in human HCCs compared to nontumor tissues, and increased expression to be associated with tumor aggressiveness and reduced survival times of patients. Overexpression of CHKA in HCC cell lines increased their invasiveness, resistance to EGFR inhibitors, and ability to form metastatic tumors in mice by promoting interaction of EGFR with mechanistic target of rapamycin complex 2.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Colina Quinasa/genética , Resistencia a Antineoplásicos/genética , Receptores ErbB/metabolismo , Neoplasias Hepáticas/metabolismo , Complejos Multiproteicos/metabolismo , ARN Mensajero/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Antineoplásicos/farmacología , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/patología , Línea Celular , Línea Celular Tumoral , Movimiento Celular/genética , Colina Quinasa/metabolismo , Receptores ErbB/antagonistas & inhibidores , Clorhidrato de Erlotinib/farmacología , Gefitinib , Células Hep G2 , Humanos , Immunoblotting , Inmunohistoquímica , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Diana Mecanicista del Complejo 2 de la Rapamicina , Ratones , Invasividad Neoplásica/genética , Trasplante de Neoplasias , Quinazolinas/farmacología , Cicatrización de Heridas/genética , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...