Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ISA Trans ; 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38908963

RESUMEN

Reconfigurable variable stiffness actuator (RVSA) has attracted increasing attention in robotics due to its safety, compliance, and robustness. However, the control of the RVSA is challenging due to nonlinear factors such as high-order nonlinear dynamic, model uncertainties, time-varying model parameters, and disturbances. In this paper, firstly, a lightweight RVSA structure with both passive and active nonlinear variable stiffness characteristic is developed. Secondly, a dynamic surface backstepping control method based on a radial basis neural network and disturbance observer (DSBC-RBFNN-DOB) is proposed to achieve position control of the lightweight RVSA with matched and unmatched uncertainties. To address solve the "complexity explosion" and noise problems in traditional backstepping control, the dynamic surface backstepping control (DSBC) method is used to design the controller. Then, a method based on radial basis neural network (RBFNN) and disturbance observer (DOB) are used to compensate for the matched and unmatched uncertainties in the link and motor. In this method, the matched uncertainties are compensated using RBFNN, and the DOB is integrated to compensate RBFNN approximation errors and unmatched uncertainties. Through Lyapunov stability analysis, the semi-global boundedness of the controller is proven. Finally, the proposed method is simulated and actually implemented, verifying the effectiveness of the method. Simulation and experimental results show that the root mean square error (RMSE) of the proposed method is only 0.97277° and 0.6418°, respectively. Compared with PID, DSBC, and DSBC-RBFNN, the error reduction percentages in simulation (experiment) are 85.6 % (88.9 %), 49.4 % (88.4 %) and 36.1 % (80.0 %) respectively.

2.
MedComm (2020) ; 5(1): e423, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38188603

RESUMEN

Duchenne muscular dystrophy (DMD) is an incurable X-linked recessive genetic disease caused by mutations in the dystrophin gene. Many researchers aim to restore truncated dystrophin via viral vectors. However, the low packaging capacity and immunogenicity of vectors have hampered their clinical application. Herein, we constructed four lentiviral vectors with truncated and sequence-optimized dystrophin genes driven by muscle-specific promoters. The four lentiviral vectors stably expressed mini-dystrophin in C2C12 muscle cells in vitro. To estimate the treatment effect in vivo, we transferred the lentiviral vectors into neonatal C57BL/10ScSn-Dmdmdx mice through local injection. The levels of modified dystrophin expression increased, and their distribution was also restored in treated mice. At the same time, they exhibited the restoration of pull force and a decrease in the number of mononuclear cells. The remissions lasted 3-6 months in vivo. Moreover, no integration sites of vectors were distributed into the oncogenes. In summary, this study preliminarily demonstrated the feasibility and safety of lentiviral vectors with mini-dystrophin for DMD gene therapy and provided a new strategy to restore truncated dystrophin.

3.
Acta Pharm Sin B ; 13(12): 4688-4714, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38045051

RESUMEN

Beclin-1 is the firstly-identified mammalian protein of the autophagy machinery, which functions as a molecular scaffold for the assembly of PI3KC3 (class III phosphatidylinositol 3 kinase) complex, thus controlling autophagy induction and other cellular trafficking events. Notably, there is mounting evidence establishing the implications of Beclin-1 in diverse tumorigenesis processes, including tumor suppression and progression as well as resistance to cancer therapeutics and CSC (cancer stem-like cell) maintenance. More importantly, Beclin-1 has been confirmed as a potential target for the treatment of multiple cancers. In this review, we provide a comprehensive survey of the structure, functions, and regulations of Beclin-1, and we discuss recent advances in understanding the controversial roles of Beclin-1 in oncology. Moreover, we focus on summarizing the targeted Beclin-1-regulating strategies in cancer therapy, providing novel insights into a promising strategy for regulating Beclin-1 to improve cancer therapeutics in the future.

4.
Cell Death Dis ; 14(12): 851, 2023 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-38129399

RESUMEN

Pyroptosis, apoptosis, and necroptosis are mainly programmed cell death (PCD) pathways for host defense and homeostasis. PANoptosis is a newly distinct inflammatory PCD pathway that is uniquely regulated by multifaceted PANoptosome complexes and highlights significant crosstalk and coordination among pyroptosis (P), apoptosis (A), and/or necroptosis(N). Although some studies have focused on the possible role of PANpoptosis in diseases, the pathogenesis of PANoptosis is complex and underestimated. Furthermore, the progress of PANoptosis and related agonists or inhibitors in disorders has not yet been thoroughly discussed. In this perspective, we provide perspectives on PANoptosome and PANoptosis in the context of diverse pathological conditions and human diseases. The treatment targeting on PANoptosis is also summarized. In conclusion, PANoptosis is involved in plenty of disorders including but not limited to microbial infections, cancers, acute lung injury/acute respiratory distress syndrome (ALI/ARDS), ischemia-reperfusion, and organic failure. PANoptosis seems to be a double-edged sword in diverse conditions, as PANoptosis induces a negative impact on treatment and prognosis in disorders like COVID-19 and ALI/ARDS, while PANoptosis provides host protection from HSV1 or Francisella novicida infection, and kills cancer cells and suppresses tumor growth in colorectal cancer, adrenocortical carcinoma, and other cancers. Compounds and endogenous molecules focused on PANoptosis are promising therapeutic strategies, which can act on PANoptosomes-associated members to regulate PANoptosis. More researches on PANoptosis are needed to better understand the pathology of human conditions and develop better treatment.


Asunto(s)
Neoplasias de la Corteza Suprarrenal , Carcinoma Corticosuprarrenal , COVID-19 , Síndrome de Dificultad Respiratoria , Humanos , Apoptosis
5.
J Clin Med ; 12(1)2022 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-36614964

RESUMEN

Ovarian cancer remains the most common gynecologic malignancy, because of its chemotherapy resistance and relapse. Anlotinib, a new oral multi-targeted tyrosine kinase inhibitor, has shown encouraging antitumor activity in several preclinical and clinical trials, while its effect on ovarian cancer has not been reported. In this study, we investigated the antitumor activity and underlying mechanism of anlotinib in ovarian cancer. Cell viability was analyzed by Cell Counting Kit-8 assay. Migration was measured by wound-healing assay. The cell cycle distribution and cell apoptosis rate were detected by flow cytometry. In vivo antitumor effect was analyzed in mouse ovarian carcinoma peritoneal metastasis model. We found that anlotinib inhibited the proliferation of ovarian cancer cells in a dose- and time- dependent manner by inducing G2/M phase arrest and apoptosis. Moreover, anlotinib upregulated the the phosphorylation of Histone H3, and expression of p21 protein in vitro. In addition, anlotinib inhibited the migration of ovarian cancer cells in vitro. Furthermore, anlotinib inhibited tumor growth by inhibiting cell proliferation and suppressing ovarian cancer angiogenesis in vivo. This study demonstrated the extraordinary anti-ovarian cancer effect of anlotinib, which may provide a promising therapeutic strategy for ovarian cancer.

6.
Front Pharmacol ; 12: 672769, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34084143

RESUMEN

The aim of this study was to investigate the correlation between genetic polymorphisms of azathioprine-metabolizing enzymes and adverse reactions of myelosuppression. To this end, a retrospective analysis was performed on 1,419 Chinese patients involving 40 different diseases and 3 genes: ITPA (94C>A), TPMT*3 (T>C), and NUDT15 (415C>T). Strict inclusion and exclusion criteria were established to collect the relative cases, and the correlation between azathioprine and myelosuppression was evaluated by adverse drug reaction criteria. The mutation rates of the three genes were 29.32, 3.73, and 21.92% and grades I to IV myelosuppression occurred in 54 (9.28%) of the 582 patients who took azathioprine. The highest proportion of myelosuppression was observed in 5 of the 6 (83.33%) patients carrying the NUDT15 (415C>T) TT genotype and 12 of the 102 (11.76%) patients carrying the NUDT15 (415C>T) CT genotype. Only the NUDT15 (415C>T) polymorphism was found to be associated with the adverse effects of azathioprine-induced myelosuppression (odds ratio [OR], 51.818; 95% CI, 5.280-508.556; p = 0.001), which suggested that the NUDT15 (415C>T) polymorphism could be an influencing factor of azathioprine-induced myelosuppression in the Chinese population. Epistatic interactions between ITPA (94C>A) and NUDT15 (415C>T) affect the occurrence of myelosuppression. Thus, it is recommended that the genotype of NUDT15 (415C>T) and ITPA (94C>A) be checked before administration, and azathioprine should be avoided in patients carrying a homozygous NUDT15 (415C>T) mutation. This study is the first to investigate the association between genetic polymorphisms of these three azathioprine-metabolizing enzymes and myelosuppression in a large number of cases with a diverse range of diseases.

7.
ACS Biomater Sci Eng ; 7(1): 311-321, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33455202

RESUMEN

Intrauterine adhesions (IUA) often occur as a result of trauma to the basal layer after curettage, postpartum hemorrhage, or surgical miscarriage. Endometrial fibrosis is the primary pathological feature of IUA. The characteristic features of IUA include excessive deposition and reorganization of the extracellular matrix, replacing the normal endometrium. To prevent uterine fibrosis after injury, we prepared and evaluated a type of fibroblast suppressive hydrogel. Poly(ethylene glycol)-b-poly(l-phenylalanine) (PEBP) copolymers were successfully synthesized by ring opening polymerization of l-Phenylalanine N-carboxyanhydride, initiated by methoxy-poly(ethylene glycol)-amine. Injectable PEBP/PEG hydrogels were subsequently formed through π-π accumulations between PEBP macromolecules and hydrogen bonds among PEBP, PEG, and H2O molecules. PEBP/PEG hydrogel could suppress the proliferation of fibroblasts due to the action of l-Phe, released sustainably from PEBP/PEG gels. Lastly, the in vivo preventive effect of PEBP/PEG hydrogel on fibrosis was evaluated in a rat uterine curettage model. It was found that PEBP/PEG hydrogel suppressed uterine fibrosis caused by curettage and promoted embryo implantation in injured uterine by regulating the expression and interactions of transforming growth factor beta 1 (TGF-ß1) and Muc-4. PEBP/PEG hydrogels have the potential for application in uterine adhesion prevention owing to their fibrosis preventive and pregnancy promotiing effects on uterine tissue after injury.


Asunto(s)
Fenilalanina , Polietilenglicoles , Animales , Femenino , Fibroblastos , Fibrosis , Humanos , Hidrogeles , Embarazo , Ratas
8.
Comput Struct Biotechnol J ; 18: 1980-1999, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32802271

RESUMEN

Zwitterions consist of equal molar cationic and anionic moieties and thus exhibit overall electroneutrality. Zwitterionic materials include phosphorylcholine, sulfobetaine, carboxybetaine, zwitterionic amino acids/peptides, and other mix-charged zwitterions that could form dense and stable hydration shells through the strong ion-dipole interaction among water molecules and zwitterions. As a result of their remarkable hydration capability and low interfacial energy, zwitterionic materials have become ideal choices for designing therapeutic vectors to prevent undesired biosorption especially nonspecific biomacromolecules during circulation, which was termed antifouling capability. And along with their great biocompatibility, low cytotoxicity, negligible immunogenicity, systematic stability and long circulation time, zwitterionic materials have been widely utilized for the delivery of drugs and therapeutic genes. In this review, we first summarized the possible antifouling mechanism of zwitterions briefly, and separately introduced the features and advantages of each type of zwitterionic materials. Then we highlighted their applications in stimuli-responsive "intelligent" drug delivery systems as well as tumor-targeting carriers and stressed the multifunctional role they played in therapeutic gene delivery.

9.
Curr Gene Ther ; 19(3): 172-196, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31566126

RESUMEN

Long-term research on various types of RNAs has led to further understanding of diverse mechanisms, which eventually resulted in the rapid development of RNA-based therapeutics as powerful tools in clinical disease treatment. Some of the developing RNA drugs obey the antisense mechanisms including antisense oligonucleotides, small interfering RNAs, microRNAs, small activating RNAs, and ribozymes. These types of RNAs could be utilized to inhibit/activate gene expression or change splicing to provide functional proteins. In the meantime, some others based on different mechanisms like modified messenger RNAs could replace the dysfunctional endogenous genes to manage some genetic diseases, and aptamers with special three-dimensional structures could bind to specific targets in a high-affinity manner. In addition, the recent most popular CRISPR-Cas technology, consisting of a crucial single guide RNA, could edit DNA directly to generate therapeutic effects. The desired results from recent clinical trials indicated the great potential of RNA-based drugs in the treatment of various diseases, but further studies on improving delivery materials and RNA modifications are required for the novel RNA-based drugs to translate to the clinic. This review focused on the advances and clinical studies of current RNA-based therapeutics, analyzed their challenges and prospects.


Asunto(s)
Ensayos Clínicos como Asunto , Enfermedades Genéticas Congénitas/genética , Enfermedades Genéticas Congénitas/terapia , Terapia Genética , Aptámeros de Nucleótidos/genética , Sistemas CRISPR-Cas , Humanos , MicroARNs/genética , Oligorribonucleótidos Antisentido/genética , ARN Catalítico , ARN Interferente Pequeño/genética
10.
Ann Transl Med ; 7(22): 692, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31930093

RESUMEN

Infantile hemangioma (IH) is a common benign tumor, which mostly resolves spontaneously; however, children with high-risk IH need treatment. Currently, the recognized first-line treatment regimen for IH is oral propranolol, but research on the pathogenesis of IH has led to the identification of new therapeutic targets, which have shown good curative effects, providing more options for disease treatment. This article summarizes the applications of different medications, dosages, and routes of administration for the treatment of IH. In addition to drug therapy, this article also reviews current therapeutic options for IH such as laser therapy, surgical treatment, and observation. To provide the best treatment, therapeutic regimens for IH should be selected based on the child's age, the size and location of the lesion, the presence of complications, the implementation conditions, and the potential outcomes of the treatment.

11.
Leuk Res ; 36(8): 1063-6, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22459330

RESUMEN

Spider venoms are a rich source of bioactive compounds with therapeutic potential. In traditional Chinese medicine, spiders and spider venoms have been used in the treatment of various ailments. In the present study, the venom of the spider Macrothele raveni potently suppressed cell growth in the myelogenous leukemia K562 cell line in a dose and time-dependent manner with an IC(50) of 5.1 µg/mL. The venom also had a low inhibitory effect on human lymphocytes with an IC(50) of approximately 36.4 µg/mL, indicating that the venom is relatively selective for leukemic cells. Venom treated K562 cells showed typical morphological indicators of apoptosis including condensation of nuclei and fragmentation of DNA. Annexin V-FITC and propidium iodide dual staining further demonstrated that the venom had potent apoptogenic activity. Venom treatment induced caspase 3 and caspase 8 activation in K562 cells and promoted PARP cleavage. The present results indicate that the venom of the spider M. raveni potently and selectively suppresses the growth of K562 cells by inducing apoptosis via caspase 3 and caspase 8 mediated signaling pathways.


Asunto(s)
Apoptosis/efectos de los fármacos , Leucemia Mieloide/patología , Venenos de Araña/farmacología , Animales , Antineoplásicos/farmacología , Caspasas/metabolismo , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Evaluación Preclínica de Medicamentos , Activación Enzimática/efectos de los fármacos , Humanos , Células K562 , Arañas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...