Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Más filtros










Intervalo de año de publicación
1.
Emerg Microbes Infect ; : 2364736, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38847071

RESUMEN

ABSTRACTSince 2007, h9.4.2.5 has emerged as the most predominant branch of H9N2 avian influenza viruses (AIVs) that affects the majority of the global poultry population. The spread of this viral branch in vaccinated chicken flocks has not been considerably curbed despite numerous efforts. The evolutionary fitness of h9.4.2.5-branched AIVs must consequently be taken into consideration. The glycosylation modifications of hemagglutinin (HA) play a pivotal role in regulating the balance between receptor affinity and immune evasion for influenza viruses. Sequence alignment showed that five major HA glycosylation patterns have evolved over time in h9.4.2.5-branched AIVs. Here, we compared the adaptive phenotypes of five virus mutants with different HA glycosylation patterns. According to the results, the mutant with 6 N-linked glycans displayed the best acid and thermal stability and a better capacity for multiplication, although having a relatively lower receptor affinity than 7 glycans. The antigenic profile between the five mutants revealed a distinct antigenic distance, indicating that variations in glycosylation level have an impact on antigenic drift. These findings suggest that changes in the number of glycans on HA can not only modulate the receptor affinity and antigenicity of H9N2 AIVs, but also affect their stability and multiplication. These adaptive phenotypes may underlie the biological basis for the dominant strain switchover of h9.4.2.5-branched AIVs. Overall, our study provides a systematic insight into how changes in HA glycosylation patterns regulate the evolutionary fitness and epidemiological dominance drift of h9.4.2.5-branched H9N2 AIVs, which will be of great benefit for the glycosylation-dependent vaccine design.

2.
J Hepatocell Carcinoma ; 11: 813-838, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38737383

RESUMEN

Purpose: Hepatocellular carcinoma is the most common primary liver cancer, with poor prognosis. Complex immune microenvironment of the liver is linked to the development of HCC. PVALB is a calcium-binding protein which has been described as a cancer suppressor gene in thyroid cancer and glioma. Nevertheless, the role of PVALB in HCC is unknown. Materials and Methods: We obtained data from TCGA and GSE54236 datasets. MCP-counter, WGCNA and LASSO model were applied to identify PVALB. With UALCAN, MethSurv, and other websites, we probed the expression, methylation and survival of PVALB. LinkedOmics and GSEA were adopted for functional analysis, while TIMER, TISIDB, Kaplan-Meier plotter, TIDE databases were utilized to evaluate the relevance of PVALB to the tumor immune microenvironment and predict immunotherapy efficacy. TargetScan, DIANA, LncRNASNP2 databases and relevant experiments were employed to construct ceRNA network. Finally, molecular docking and drug sensitivity of PVALB were characterized by GeneMANIA, CTD, and so on. Results: PVALB was recognized as a gene associated with HCC and NK cell. Its expression was down-regulated in HCC tissue, which lead to adverse prognosis. Besides, the hypomethylation of PVALB was related to its reduced expression. Notably, PVALB was tightly linked to immune, and its reduced expression attenuated the anticancer effect of NK cells via the Fas/FasL pathway, leading to a adverse outcome. The lnc-YY1AP1-3/hsa-miR-6735-5p/PVALB axis may regulate the PVALB expression. Finally, we found immunotherapy might be a viable treatment option. Conclusion: In a word, PVALB is a prognostic indicator, whose low expression facilitates HCC progression by impacting NK cell infiltration.

3.
Aging (Albany NY) ; 16(8): 6954-6989, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38613802

RESUMEN

BACKGROUND: Glioma, a highly invasive and deadly form of human neoplasm, presents a pressing need for the exploration of potential therapeutic targets. While the lysosomal protein transmembrane 4A (LATPM4A) has been identified as a risk factor in pancreatic cancer patients, its role in glioma remains unexplored. METHODS: The analysis of differentially expressed genes (DEG) was conducted from The Cancer Genome Atlas (TCGA) glioma dataset and the Genotype Tissue Expression (GTEx) dataset. Through weighted gene co-expression network analysis (WGCNA), the key glioma-related genes were identified. Among these, by using Kaplan-Meier (KM) analysis and univariate/multivariate COX methods, LAPTM4A emerged as the most influential gene. Moreover, the bioinformatics methods and experimental verification were employed to analyze its relationships with diagnosis, clinical parameters, epithelial-mesenchymal transition (EMT), metastasis, immune cell infiltration, immunotherapy, drug sensitivity, and ceRNA network. RESULTS: Our findings revealed that LAPTM4A was up-regulated in gliomas and was associated with clinicopathological features, leading to poor prognosis. Furthermore, functional enrichment analysis demonstrated that LATPM4A played a role in the immune system and cancer progression. In vitro experiments indicated that LAPTM4A may influence metastasis through the EMT pathway in glioma. Additionally, we found that LAPTM4A was associated with the tumor microenvironment (TME) and immunotherapy. Notably, drug sensitivity analysis revealed that patients with high LAPTM4A expression were sensitive to doxorubicin, which contributed to a reduction in LAPTM4A expression. Finally, we uncovered the FGD5-AS1-hsa-miR-103a-3p-LAPTM4A axis as a facilitator of glioma progression. CONCLUSIONS: In conclusion, our study identifies LATPM4A as a promising biomarker for prognosis and immune characteristics in glioma.


Asunto(s)
Biomarcadores de Tumor , Neoplasias Encefálicas , Biología Computacional , Glioma , Proteínas de la Membrana , Femenino , Humanos , Masculino , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Transición Epitelial-Mesenquimal/genética , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Glioma/genética , Glioma/patología , Glioma/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Pronóstico
4.
Thromb J ; 22(1): 26, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38491391

RESUMEN

BACKGROUND: Analyses of extensive, nationally representative databases indicate a rising prevalence of venous thromboembolism (VTE) among critically ill children. However, the majority of studies on childhood VTE have primarily concentrated on Caucasian populations in the United States and European countries. There is a lack of epidemiological studies on VTE in Chinese children. METHODS: We conducted a retrospective cohort study of data from the Pediatric Intensive Care (PIC) database. Data were obtained and extracted by using Structured Query Language (SQL) and the administrative platform pgAdmin4 for PostgreSQL. Bivariate analyses were conducted in which categorical variables were analyzed by a chi-square test and continuous variables were analyzed by a Student's t-test. Separate multivariable logistic regressions were employed to investigate the associations between VTE and sociodemographic factors as well as clinical factors. RESULTS: Our study included 12,881 pediatric patients from the PIC database, spanning the years 2010 to 2018. The incidence rate of pediatric VTE was 0.19% (24/12,881). The venous thrombotic locations were deep venous thrombosis extremities (n = 18), superior vena cava (n = 1), cerebral sinovenous (n = 1), and other deep venous thrombosis (n = 4). Univariate analysis showed that age, weight, shock, sepsis, cancer and vasopressor receipt were statistically significant risk factors for pediatric VTE (all p ≤ 0.05). After multivariable logistic regression analysis, only shock (aOR: 6.77, 95%CI: 1.33-34.73, p = 0.019) and admission for sepsis (aOR: 6.09, 95%CI: 1.76-21.09, p = 0.004) were statistically significant associated with pediatric VTE. CONCLUSIONS: In conclusion, data obtained from the Pediatric Intensive Care (PIC) database revealed a prevalence of VTE in pediatric patients of 0.19%. The most common location for venous thrombi was deep venous thrombosis (DVT) in the extremities. We identified that shock and sepsis were statistically significant factors associated with pediatric VTE.

5.
Biomater Sci ; 12(7): 1643-1661, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38411223

RESUMEN

Tissue adhesion is one of the most common postoperative complications, which is frequently accompanied by inflammation, pain, and even dyskinesia, significantly reducing the quality of life of patients. Thus, to prevent the formation of tissue adhesions, various strategies have been explored. Among these methods, placing anti-adhesion membranes over the injured site to separate the wound from surrounding tissues is a simple and prominently favored method. Recently, electrospun nanofibers have been the most frequently investigated antiadhesive membranes due to their tunable porous structure and high porosities. They not only can act as an essential barrier and functional carrier system but also allow for high permeability and nutrient transport, showing great potential for preventing tissue adhesion. Herein, we provide a short review of the most recent applications of electrospun nanofibrous antiadhesive membranes in tendons, the abdominal cavity, dural sac, pericardium, and meninges. Firstly, each section highlights the most representative examples and they are sorted based on the latest progress of related research. Moreover, the design principles, preparation strategies, overall performances, and existing problems are highlighted and evaluated. Finally, the current challenges and several future ways to develop electrospun nanofibrous antiadhesive membranes are proposed. The systematic discussion and proposed directions can shed light on ideas and guide the reasonable design of electrospun nanofibrous membranes, contributing to the development of exceptional tissue anti-adhesive materials in the foreseeable future.


Asunto(s)
Nanofibras , Humanos , Nanofibras/química , Adherencias Tisulares/prevención & control , Calidad de Vida , Tendones/cirugía , Inflamación/patología
6.
Clin Chim Acta ; 554: 117785, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38228224

RESUMEN

BACKGROUND: The study aimed to investigate the diagnostic value of lupus-related pattern recognition receptors (PRRs) genes in peripheral blood mononuclear cells (PBMCs) and monocytes (MONs) for lupus nephritis (LN). METHODS: PBMCs were isolated from a cohort with 37 LN patients and 39 healthy controls (HCs), and MONs were derived from another cohort with 70 LN patients and 66 HCs. Q-PCR was used to measure the mRNA levels of CGAS, IFNB1, AIM2, IL1Β, NLRC4, NLRP3, NLRP12 and ZBP1 in the PBMCs and MONs. The Mann-Whitney U test was used to compare the data in LN patients and HCs. Eleven GEO datasets of SLE/LN were used to perform differentially expressed genes (DEGs) analysis to these PRR genes. Receiver operating characteristic (ROC) curve analysis was employed to assess the performance of individual genes or the disease prediction model established by combining multiple genes in LN diagnosis. Spearman correlation method was done to analyze the correlation between these PRRs and other clinical characteristics. RESULTS: The mRNA levels of five genes (AIM2, NLRC4, IL1B, NLRP12 and ZBP1) in PBMCs, and seven genes (CGAS, IFNB1, AIM2, IL1B, NLRP3, NLRP12 and ZBP1) in MONs of LN patients were significantly higher than those of HCs (P < 0.05). DEGs analysis based on the GEO datasets showed that ZBP1, AIM2 and IL1B were significantly increased in several datasets. The ROC curve analysis indicated that the area under curve (AUC) of the LN prediction models derived from PBMCs or MONs were 0.82 or 0.91 respectively. In addition, the expression levels of these PRRs were correlated with other clinical features in LN patients, including Anti-Sm, ESR, serum Cr, and C3. CONCLUSION: Our study suggests that these lupus-related PRRs might be served as potential biomarkers of LN.


Asunto(s)
Lupus Eritematoso Sistémico , Nefritis Lúpica , Humanos , Nefritis Lúpica/diagnóstico , Nefritis Lúpica/genética , Nefritis Lúpica/metabolismo , Leucocitos Mononucleares/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR , Monocitos/metabolismo , Biomarcadores , ARN Mensajero/genética , Nucleotidiltransferasas , Curva ROC
7.
Aging (Albany NY) ; 16(1): 714-745, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38217544

RESUMEN

BACKGROUND: Uterine corpus endometrial carcinoma (UCEC) is one of the most common gynecological malignancies and its incidence and mortality continue apace. Lysosome-associated membrane protein 3 (LAMP3) is the third member of the LAMP family and its overexpression has been described to be involved in the progression of breast, ovarian and cervical cancers, but there has been an absence of research focusing on its role in UCEC. METHODS: WGCNA, TIMER, LinkedOmics, GSEA, Cytoscape, Kaplan-Meier plotter, GDC, GeneMANIA, cBioPortal, PDB, RNAinter, miRNet were applied in this research. RESULTS: Our study uncovers that LAMP3 possesses higher expression levels in UCEC compared to normal tissues, and this differential expression profile is tightly aligned with clinical and pathological features, and patients demonstrating high LAMP3 expression tend to have a shorter survival expectancy. The high expression of LAMP3 is modulated by the designated ceRNA network. LAMP3 is engaged in UCEC progression by functioning in a variety of biological roles of relevance to immunity. Furthermore, we predicted several prospering drugs based on drug sensitivity. Finally, we also constructed possible docking patterns of LAMP3 with ABCA3, RAB9A, and SGTB. CONCLUSIONS: LAMP3 is a formidable biomarker for UCEC and could be a prospective candidate for the diagnosis, treatment and prognostic assessment of UCEC.


Asunto(s)
Mama , Carcinoma Endometrioide , Humanos , Femenino , Pronóstico , Proteínas de Neoplasias , Proteína 3 de la Membrana Asociada a Lisosoma
8.
Cancer Res ; 84(4): 517-526, 2024 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-38085180

RESUMEN

The three-dimensional (3D) tumor microenvironment (TME) comprises multiple interacting cell types that critically impact tumor pathology and therapeutic response. Efficient 3D imaging assays and analysis tools could facilitate profiling and quantifying distinctive cell-cell interaction dynamics in the TMEs of a wide spectrum of human cancers. Here, we developed a 3D live-cell imaging assay using confocal microscopy of patient-derived tumor organoids and a software tool, SiQ-3D (single-cell image quantifier for 3D), that optimizes deep learning (DL)-based 3D image segmentation, single-cell phenotype classification, and tracking to automatically acquire multidimensional dynamic data for different interacting cell types in the TME. An organoid model of tumor cells interacting with natural killer cells was used to demonstrate the effectiveness of the 3D imaging assay to reveal immuno-oncology dynamics as well as the accuracy and efficiency of SiQ-3D to extract quantitative data from large 3D image datasets. SiQ-3D is Python-based, publicly available, and customizable to analyze data from both in vitro and in vivo 3D imaging. The DL-based 3D imaging analysis pipeline can be employed to study not only tumor interaction dynamics with diverse cell types in the TME but also various cell-cell interactions involved in other tissue/organ physiology and pathology. SIGNIFICANCE: A 3D single-cell imaging pipeline that quantifies cancer cell interaction dynamics with other TME cell types using primary patient-derived samples can elucidate how cell-cell interactions impact tumor behavior and treatment responses.


Asunto(s)
Aprendizaje Profundo , Humanos , Microambiente Tumoral , Imagenología Tridimensional/métodos , Programas Informáticos , Comunicación Celular
9.
Dermatol Surg ; 50(2): 160-164, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37962160

RESUMEN

BACKGROUND: Patients with hypertrophic scars (HSs) or keloids occasionally have epidermoid cysts (ECs), and the effect of ECs on the effectiveness of intralesional corticosteroids (ILCs) treatment in these patients has not been reported. OBJECTIVE: This study aims to evaluate the influence of ECs on the outcomes of ILCs treatment in patients with HSs or keloids. MATERIALS AND METHODS: This prospective study included 572 patients with keloids ( n = 461) or HSs ( n = 111). Patients received intralesional triamcinolone acetonide injection (0.05 mL/injection) at a concentration of 40 mg/mL and every 28 days for 4 sessions, with a 1-year follow-up. RESULTS: A higher incidence of ECs was observed in keloid patients (16.92%) compared with HSs patients (7.21%). Keloid patients with ECs were older ( p = .008) and had a longer disease duration ( p = .0148), higher Vancouver scar scale (VSS) scores ( p = .04), and greater thickness ( p = .006). Keloid patients with ECs showed less improvement in VSS scores ( p < .0001) and thickness ( p < .0001) after ILCs treatment, with a higher recurrence rate ( p < .0001). The overall complication rate in keloid patients with ECs after ILCs treatment was 49.51%. CONCLUSION: Epidermoid cysts under keloids were associated with a poor response to ILCs therapy. Therefore, it is recommended to incorporate ultrasonography as a routine examination for keloid patients to aid in better decision making in clinical practice.


Asunto(s)
Cicatriz Hipertrófica , Quiste Epidérmico , Queloide , Humanos , Queloide/cirugía , Cicatriz Hipertrófica/tratamiento farmacológico , Cicatriz Hipertrófica/etiología , Cicatriz Hipertrófica/patología , Estudios Prospectivos , Proyectos Piloto , Quiste Epidérmico/complicaciones , Quiste Epidérmico/tratamiento farmacológico , Inyecciones Intralesiones , Resultado del Tratamiento , Triamcinolona Acetonida
10.
Vaccines (Basel) ; 11(12)2023 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-38140162

RESUMEN

Nipah virus (NiV) causes severe, lethal encephalitis in humans and pigs. However, there is no licensed vaccine available to prevent NiV infection. In this study, we used the reverse genetic system based on the attenuated rabies virus strain SRV9 to construct two recombinant viruses, rSRV9-NiV-F and rSRV9-NiV-G, which displayed the NiV envelope glycoproteins F and G, respectively. Following three immunizations in BALB/c mice, the inactivated rSRV9-NiV-F and rSRV9-NiV-G alone or in combination, mixed with the adjuvants ISA 201 VG and poly (I:C), were able to induce the antigen-specific cellular and Th1-biased humoral immune responses. The specific antibodies against rSRV9-NiV-F and rSRV9-NiV-G had reactivity with two constructed bacterial-like particles displaying the F and G antigens of NiV. These data demonstrate that rSRV9-NiV-F or rSRV9-NiV-G has the potential to be developed into a promising vaccine candidate against NiV infection.

11.
BMC Complement Med Ther ; 23(1): 336, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37749558

RESUMEN

BACKGROUND: mTORC1 (mechanistic target of rapamycin complex 1) is associated with lymphoma progression. Oncogenic RRAGC (Rag guanosine triphosphatase C) mutations identified in patients with follicular lymphoma facilitate the interaction between Raptor (regulatory protein associated with mTOR) and Rag GTPase. It promotes the activation of mTORC1 and accelerates lymphomagenesis. Cardamonin inhibits mTORC1 by decreasing the protein level of Raptor. In the present study, we investigated the inhibitory effect and possible mechanism of action of cardamonin in RRAGC-mutant lymphoma. This could provide a precise targeted therapy for lymphoma with RRAGC mutations. METHODS: Cell viability was measured using a cell counting kit-8 (CCK-8) assay. Protein expression and phosphorylation levels were determined using western blotting. The interactions of mTOR and Raptor with RagC were determined by co-immunoprecipitation. Cells overexpressing RagC wild-type (RagCWT) and RagC Thr90Asn (RagCT90N) were generated by lentiviral infection. Raptor knockdown was performed by lentivirus-mediated shRNA transduction. The in vivo anti-tumour effect of cardamonin was assessed in a xenograft model. RESULTS: Cardamonin disrupted mTOR complex interactions by decreasing Raptor protein levels. RagCT90N overexpression via lentiviral infection increased cell proliferation and mTORC1 activation. The viability and tumour growth rate of RagCT90N-mutant cells were more sensitive to cardamonin treatment than those of normal and RagCWT cells. Cardamonin also exhibited a stronger inhibitory effect on the phosphorylation of mTOR and p70 S6 kinase 1 in RagCT90N-mutant cells. Raptor knockdown abolishes the inhibitory effects of cardamonin on mTOR. An in vivo xenograft model demonstrated that the RagCT90N-mutant showed significantly higher sensitivity to cardamonin treatment. CONCLUSIONS: Cardamonin exerts selective therapeutic effects on RagCT90N-mutant cells. Cardamonin can serve as a drug for individualised therapy for follicular lymphoma with RRAGC mutations.


Asunto(s)
Linfoma de Células B , Linfoma Folicular , Proteínas de Unión al GTP Monoméricas , Proteína Reguladora Asociada a mTOR , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Serina-Treonina Quinasas TOR , Animales
12.
Diabetes Metab Syndr Obes ; 16: 2105-2116, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37457110

RESUMEN

Background: Diabetic nephropathy (DN) is a serious microvascular complication of diabetes that may lead to chronic renal failure and end-stage renal disease. Circular RNAs (circRNAs) play important roles in DN progression. However, the action of circRNA ADP ribosylation factor 3 (circ_Arf3) in high glucose (HG)-induced change is still unclear. Methods: Mouse mesangial cells (MCs) were treated with 30 mM HG as a DN cell model in vitro. Quantitative real-time polymerase chain reaction (qRT-PCR) was employed to examine the expression levels of circ_Arf3, microRNA (miR)-452-5p and muscleblind like splicing regulator 1 (Mbnl1). The proliferation of HG-treated MCs was assessed using 5 Ethynyl 2' deoxyuridine (EdU) and cell counting kit-8 (CCK-8) assays, and the levels of proliferation and fibrosis-related proteins and Mbnl1 were detected by Western blot. Dual-luciferase reporter and RNA pull-down assays were utilized to determine the relationship between miR-452-5p and circ_Arf3 or Mbnl1. Results: Our results discovered that circ_Arf3 and Mbnl1 were lowly expressed in HG-treated MCs, while miR-452-5p expression was up-regulated. Moreover, circ_Arf3 was mainly located in the cytoplasm and had a ring-like stable structure. Functional assays demonstrated that overexpression of circ_Arf3 prevented cell proliferation and fibrous formation in HG-treated MCs. Circ_Arf3 could sponge miR-452-5p, and the effect of circ_Arf3 overexpression was reversed by enhanced expression of miR-452-5p. Mbnl1 was a direct target of miR-452-5p. Knockdown of Mbnl1 abolished the suppressive effects of miR-452-5p inhibitor on proliferation and fibrosis-related protein expression in HG-treated MCs. Moreover, circ_Arf3 regulated Mbnl1 through miR-452-5p. Conclusion: Overexpression of circ_Arf3 prevents cell proliferation and fibrous formation in HG-treated MCs by regulating the expression of Mbnl1 via miR-452-5p.

13.
Oncol Res ; 31(1): 71-82, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37303736

RESUMEN

Cutaneous squamous cell carcinoma (cSCC), a type of non-melanoma skin cancer (NMSC), is the most common malignancy worldwide. Thioredoxin (TXN) domain-containing protein 9 (TXNDC9) is a member of the TXN family that is important in cell differentiation. However, the biological function of this protein in cancer, particularly cSCC, is still unknown. In the present study, our experiments revealed the protective effects of TXNDC9 on UV-B-irritated cSCC cells. The initial findings showed that TXNDC9 is significantly upregulated in cSCC tissue and cells compared to normal skin tissue and keratinocytes. UV-B radiation robustly induces the expression of TXNDC9, and UV-B-induced cSCC cell death is boosted by TXNDC9 deficiency. Moreover, cSCC cells lacking TXNDC9 displayed attenuated activation of the NF-κB pathway. Additional studies by inhibiting TXNDC9 confirmed this finding, as TXNDC9 deficiency attenuated UV-B radiation-induced translocation of NF-κB p65 from the cytoplasm to the nucleus of cSCC. In conclusion, our work demonstrates the biological roles of TXNDC9 in cSCC progression and may provide a novel therapeutic target to treat cSCC in the future.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias Cutáneas , Tiorredoxinas , Humanos , Apoptosis , Carcinoma de Células Escamosas/genética , FN-kappa B , Neoplasias Cutáneas/genética , Tiorredoxinas/genética
14.
PeerJ ; 11: e15498, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37304865

RESUMEN

Background: A balance on nutrient supply and redox homeostasis is required for cell survival, and increased antioxidant capacity of cancer cells may lead to chemotherapy failure. Objective: To investigate the mechanism of anti-proliferation of cardamonin by inducing oxidative stress in ovarian cancer cells. Methods: After 24 h of drug treatment, CCK8 kit and wound healing test were used to detect cell viability and migration ability, respectively, and the ROS levels were detected by flow cytometry. The differential protein expression after cardamonin administration was analyzed by proteomics, and the protein level was detected by Western blotting. Results: Cardamonin inhibited the cell growth, which was related to ROS accumulation. Proteomic analysis suggested that MAPK pathway might be involved in cardamonin-induced oxidative stress. Western blotting showed that cardamonin decreased Raptor expression and the activity of mTORC1 and ERK1/2. Same results were observed in Raptor KO cells. Notably, in Raptor KO cells, the effect of cardamonin was weakened. Conclusion: Raptor mediated the function of cardamonin on cellular redox homeostasis and cell proliferation through mTORC1 and ERK1/2 pathways.


Asunto(s)
Sistema de Señalización de MAP Quinasas , Neoplasias Ováricas , Femenino , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Proteómica , Especies Reactivas de Oxígeno , Neoplasias Ováricas/tratamiento farmacológico , Proteína Reguladora Asociada a mTOR , Estrés Oxidativo
15.
Biochem Biophys Res Commun ; 667: 1-9, 2023 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-37201357

RESUMEN

Cardiac ischemia/reperfusion(I/R) induced-cardiac vascular endothelial injury is an important pathological process that appears in the early stage of cardiac I/R injury. The autophagy-lysosomal pathway is essential for the maintenance of cellular homeostasis. However, in cardiac I/R injury, the role of the autophagy-lysosomal pathway is controversial. The present study aimed to use oxygen-glucose deprivation/oxygen-glucose resupply(OGD/OGR) in human coronary artery endothelial cells(HCAECs) with I/R injury to assess the role of the autophagy-lysosomal pathway in I/R-induced endothelial injury. The results revealed lysosomal dysfunction and impaired autophagic flux in endothelial cells exposed to OGD/OGR. Meanwhile, our data showed that the levels of cathepsin D(CTSD) decreased time-dependently. Knockdown of CTSD caused lysosomal dysfunction and impaired autophagic flux. Conversely, restoration of CTSD levels protected HCAECs against OGD/OGR induced-defects in autophagy-lysosomal function and cellular damage. Our findings indicated that I/R induced-impaired autophagic flux, rather than excessive autophagic initiation, mediates endothelial cells injury. The maintenance of autophagy-lysosomal function is critical to protect endothelial cells against I/R injury, and CTSD is a key regulator. Thus, strategies focused on restoring CTSD function are potentially novel treatments for cardiac reperfusion injury.


Asunto(s)
Autofagia , Catepsina D , Lisosomas , Daño por Reperfusión , Humanos , Arterias/citología , Lisosomas/metabolismo , Daño por Reperfusión/metabolismo , Catepsina D/genética , Catepsina D/metabolismo , Técnicas de Silenciamiento del Gen , Células Cultivadas , Oxígeno/metabolismo , Glucosa/metabolismo
16.
Inorg Chem ; 62(13): 5219-5228, 2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-36942652

RESUMEN

It is very important to develop ideal electrocatalysts to accelerate the sulfur redox kinetics in both the discharging and charging processes for high-performance lithium-sulfur batteries. Herein, defect-rich cation-doped V2O5 yolk-shell microspheres are reported as a catalytic host of sulfur. The doping of W or Mo cations induces no impurities, broadens the lattice spacing of V2O5, and enriches the oxygen vacancy defects. Thus, the doped V2O5 host affords sufficient active sites for chemically anchoring polysulfides and promising catalytic effect on the mutual conversion between different sulfur intermediates. As a result, the S/W-V2O5 cathode delivers a discharging capacity of 1143.3 mA g-1 at an initial rate of 0.3 C and 681.8 mA g-1 at 5 C. Even under a sulfur loading of up to 5.5 mg cm-2 and a minimal electrolyte/sulfur ratio of 6 µL mg-1, the S/W-V2O5 cathode could still achieve good sulfur utilization and dependable cycle stability. Thus, this work offers an electrocatalytic host based on the cation doping strategy to greatly enhance the sulfur redox kinetics for high-performance Li-S batteries.

17.
Clin. transl. oncol. (Print) ; 25(3): 748-757, mar. 2023.
Artículo en Inglés | IBECS | ID: ibc-216433

RESUMEN

Purpose Renal cell carcinoma (RCC) is one of the most common malignant tumors of the urinary system, which has high metastasis. MicroRNAs (miRNAs) have been reported to participate in RCC progression. The present study aimed to understand the biological role and mechanism of miR-378a-3p in RCC. Methods RT-qPCR assay was used to assess miR-378a-3p and transducer of ERBB2 (TOB2) expression in RCC tissues and cell lines. CCK-8, clone formation, scratch, and transwell assays were carried out to evaluate cell proliferation, migration, and invasion. Furthermore, the target genes of miR-378a-3p were predicted by the online bioinformatics databases. Dual-luciferase reporter assay was used to validate the relationship between miR-378a-3p and TOB2. Results miR-378a-3p was highly expressed in RCC tissues and RCC cell lines. Besides, miR-378a-3p accelerated the progression of RCC by mediating cell proliferation, migration and invasion. More importantly, TOB2 was confirmed as a potential target gene of miR-378a-3p. The results of loss-of-function experiments showed that inhibition of TOB2 reversed the inhibitory roles of miR-378a-3p inhibitor on RCC progression. Conclusions miR-378a-3p promoted cell proliferation, migration and invasion through regulating TOB2 in RCC, which indicated a promising target for the treatment of RCC (AU)


Asunto(s)
Humanos , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/metabolismo , Neoplasias Renales/genética , Neoplasias Renales/metabolismo , MicroARNs/metabolismo , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Regulación Neoplásica de la Expresión Génica
18.
Appl Environ Microbiol ; 89(1): e0157222, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36602303

RESUMEN

H5N8, a highly pathogenic avian influenza, has become a new zoonotic threat in recent years. As of December 28, 2021, at least 3,206 H5N8 cases had been reported in wild birds and poultry worldwide. In January 2021, a novel virus strain named A/goose/China/1/2021 was isolated during an H5N8 goose influenza outbreak in northeastern China. The PB2, PB1, HA, and M genes of A/goose/China/1/2021 were highly identical to those of H5N8 strains emerging in Kazakhstan and Russia in Central Asia from August to September 2020, while the remaining four genes had the closest homology to those of H5N8 viruses isolated in South Korea in East Asia from November to December 2020. We thus speculate that A/goose/China/1/2021 is likely a reassortant virus that formed in the 2020 to 2021 influenza season and that the migratory birds via the two migration routes of Central Asia and East Asia-Australia may have played an essential role in the genetic reassortment of this virus. The phylogenetic analysis indicated that the HA genes of H5N8 viruses belonging to group II of subclade 2.3.4.4b, including A/goose/China/1/2021, may be derived from strains in Central Asia. Given the complex global spread of H5N8 virus, our study highlights the necessity to strengthen the function of the global surveillance network for H5N8 virus and to accelerate the pace of vaccine development to confront the current challenges posed by H5N8 virus of subclade 2.3.4.4. IMPORTANCE H5N8, a highly pathogenic avian influenza, not only has an impact on public health, but also has a huge negative impact on animal health, food safety, safety, and even on the local and international economy. The migratory wild birds play a vital role in the intercontinental transmission of H5N8 virus. It is urgent that we should strengthen the function of the global surveillance network for H5N8 virus and accelerate the pace of vaccine development to confront the current challenges posed by H5N8 virus of subclade 2.3.4.4.


Asunto(s)
Subtipo H5N8 del Virus de la Influenza A , Virus de la Influenza A , Gripe Aviar , Animales , Animales Salvajes , China/epidemiología , Gansos , Subtipo H5N8 del Virus de la Influenza A/genética , Gripe Aviar/epidemiología , Filogenia
19.
Methods Cell Biol ; 173: 49-64, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36653085

RESUMEN

Natural Killer (NK) cells detect and eliminate virus-infected cells and cancer cells, and are crucial players of the human immune defense system. Although the relevant molecular machineries involved in NK cell activation and NK-target cell interactions are largely known, how their collective signaling modulates the dynamic behaviors of NK cells, e.g., motility and cytotoxicity, and the rate-limiting kinetics involved are still in need of comprehensive investigations. In traditional bulk killing assays, heterogeneity and kinetic details of individual NK-target cell interactions are masked, seriously limiting analysis of the underlying dynamic mechanisms. Here we present detailed protocols of a number of live-cell imaging assays using fluorescent protein reporters and/or a live-cell dye that enable the acquisition of quantitative kinetic data at the single cell level for elucidating the mechanism underlying the interaction dynamics of primary human NK cells and epithelial cancer cells. Moreover, we discuss how the imaging data can be analyzed either alone or in combination to quantify and determine the key dynamic steps/intermediates involved in specific NK cell activity, e.g., NK cell cytotoxic modes and their associated kinetics, and NK cell motility toward different cancer targets. These live-cell imaging assays can be easily adapted to analyze the rate-limiting kinetics and heterogeneity of other cell-cell interaction dynamics, e.g., in T cell function.


Asunto(s)
Comunicación Celular , Células Asesinas Naturales , Humanos
20.
Clin Transl Oncol ; 25(3): 748-757, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36309620

RESUMEN

PURPOSE: Renal cell carcinoma (RCC) is one of the most common malignant tumors of the urinary system, which has high metastasis. MicroRNAs (miRNAs) have been reported to participate in RCC progression. The present study aimed to understand the biological role and mechanism of miR-378a-3p in RCC. METHODS: RT-qPCR assay was used to assess miR-378a-3p and transducer of ERBB2 (TOB2) expression in RCC tissues and cell lines. CCK-8, clone formation, scratch, and transwell assays were carried out to evaluate cell proliferation, migration, and invasion. Furthermore, the target genes of miR-378a-3p were predicted by the online bioinformatics databases. Dual-luciferase reporter assay was used to validate the relationship between miR-378a-3p and TOB2. RESULTS: miR-378a-3p was highly expressed in RCC tissues and RCC cell lines. Besides, miR-378a-3p accelerated the progression of RCC by mediating cell proliferation, migration and invasion. More importantly, TOB2 was confirmed as a potential target gene of miR-378a-3p. The results of loss-of-function experiments showed that inhibition of TOB2 reversed the inhibitory roles of miR-378a-3p inhibitor on RCC progression. CONCLUSIONS: miR-378a-3p promoted cell proliferation, migration and invasion through regulating TOB2 in RCC, which indicated a promising target for the treatment of RCC.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , MicroARNs , Humanos , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/metabolismo , MicroARNs/metabolismo , Línea Celular , Neoplasias Renales/genética , Neoplasias Renales/metabolismo , Proliferación Celular , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Movimiento Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...