Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Hazard Mater ; 469: 134063, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38508112

RESUMEN

Sulfadiazine (SDZ), a widely used effective antibiotic, is resistant to conventional biological treatment, which is concerning since untreated SDZ discharge can pose a significant environmental risk. Electro-Fenton (EF) technology is a promising advanced oxidation technology for efficiently removing SDZ. However, due to the limitations of traditional experimental methods, there is a lack of in-depth study on the mechanism of ·OH-dominated SDZ degradation in EF process. In this study, an EF system was established for SDZ degradation and the transformation products (TPs) were detected by mass spectrometry. Dynamic thermodynamic, kinetic and wave function analysis of reactants, transition states and intermediates were proposed by density functional theory calculations, which was applied to elucidate the underlying mechanism of SDZ degradation. Experimental results showed that amino, benzene, and pyrimidine sites in SDZ were oxidized by ·OH, producing TPs through hydrogen abstraction and addition reactions. ·OH was kinetically more likely to attack SDZ- than SDZ. Fe(IV) dominated the single-electron transfer oxidation reaction of SDZ, and the formed organic radicals can spontaneously generate the de-SO2 product via Smiles rearrangement. Toxicity experiments showed the toxicity of SDZ and TPs can be greatly reduced. The results of this study promote the understanding of SDZ degradation mechanism in-depth. ENVIRONMENTAL IMPLICATION: Sulfadiazine (SDZ) is one of the antibiotics widely used around the world. However, it has posed a significant environmental risk due to its overuse and cannot be efficiently removed by traditional treatment methods. The lack of in-depth study on SDZ degradation mechanism under reactive species limits the improvement of SDZ degradation efficiency. Therefore, this work focused on SDZ degradation mechanism in-depth under electro-Fenton system through reactive species investigation, mass spectrometry analysis, and theoretical calculation. The results in this study can provide a theoretical basis for improving the SDZ degradation efficiency which will contribute to solving SDZ pollution problems.


Asunto(s)
Sulfadiazina , Contaminantes Químicos del Agua , Sulfadiazina/química , Antibacterianos/química , Oxidación-Reducción , Espectrometría de Masas , Contaminantes Químicos del Agua/química
2.
Sci Total Environ ; 915: 169847, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38185169

RESUMEN

Autotrophic denitrification (AD) without carbon source is an inevitable choice for denitrification of municipal wastewater under the carbon peaking and carbon neutrality goals. This study first employed sulfur-tourmaline-AD (STAD) as an innovative nitrate removal trial technique in wastewater. STAD demonstrated a 2.23-fold increase in nitrate­nitrogen (NO3--N) removal rate with reduced nitrite­nitrogen (NO2--N) accumulation, effectively removing 99 % of nitrogen pollutants compared to sulfur denitrification. Some denitrifiers microorganisms that could secrete tyrosine, tryptophan, and aromatic protein (extracellular polymeric substances (EPS)). Moreover, according to the EPS composition and characteristics analysis, the secretion of loosely bound extracellular polymeric substances (LB-EPS) that bound to the bacterial endogenous respiration and enriched microbial abundance, was produced more in the STAD system, further improving the system stability. Furthermore, the addition of tourmaline (Tm) facilitated the discovery of a new genus (Paracoccus) that enhanced nitrate decomposition. Applying optimal electron donors through metabolic pathways and the microbial community helps to strengthen the AD process and treat low carbon/nitrogen ratio wastewater efficiently.


Asunto(s)
Desnitrificación , Silicatos , Aguas Residuales , Nitratos , Electrones , Azufre/metabolismo , Nitrógeno , Carbono , Reactores Biológicos/microbiología
3.
Sci Total Environ ; 858(Pt 3): 160170, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36379335

RESUMEN

The sluggish kinetics of oxygen evolution reaction (OER) is the bottleneck of alkaline water electrolysis. The urea oxidation reaction (UOR) with much faster kinetics was to replace OER. To further promote UOR, a heterojunction structure assembled of CoSx and MoOx was established, and then its superior catalytic activity was predicted by DFT calculation. After that, an ultra-thin CoSx-MoOx@nickel foam (CoSx-MoOx@NF) electrode with a Mott-Schottky structure was prepared via a facile hydrothermal method, followed by a low-temperature vulcanization. Results highlighted CoSx-MoOx@NF electrode presented a superior performance toward UOR, OER, and H2 evolution reaction (HER). Notably, it exhibited excellent electrocatalytic performance for OER (1.32 V vs. RHE, 10 mA cm-2), UOR (1.305 V vs. RHE, 10 mA cm-2), and urea-assisted overall water splitting with a low voltage (1.38 V, 10 mA cm-2) when CoSx-MoOx@NF electrode served as both anode and cathode. It is promising to use CoSx-MoOx@NF in an electrochemical system integrated with H2 generation and urea-rich wastewater purification.


Asunto(s)
Electrólisis , Urea , Electrodos , Oxígeno , Agua
4.
J Colloid Interface Sci ; 629(Pt A): 755-765, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36099843

RESUMEN

The sluggish kinetics of oxygen evolution reaction (OER) is the bottleneck of water splitting. Hence, we designed a nanowire Co3O4@nickel foam (Co3O4-NW@NF) electrode to boost OER utilizing the locally enhanced interfacial Joule heating and electric field within the diffusion layer. Results show that the morphology of Co3O4@NF could be regulated in nanowires, nanosheets, and nanoclusters by controlling the doping amount of fluoride ions (F-). F- served as a complexing agent to regulate the rate of crystal nucleus, and then morphologies could be tuned. compared to others, nanowire structures have a much lower potential (298 mV vs. RHE, 10 mA cm-2) and Tafel slope (48.11 mV dec-1). This better electrochemical performance was confirmed by the Density Functional Theory (DFT) that the (311) facet with oxygen vacancies of Co3O4 has a low onset potential (0.36 V) for the kinetic rate of OER. A much better mass transfer by the nanowire-enhanced interfacial Joule heating and electric field within the diffusion layer also accounted for superior OER activity, confirmed by COMSOL simulation. In a word, the design of the nanotip structure offers a novel way to boost the OER rate by enhancing electron transfer and mass transport simultaneously.

5.
Water Res ; 191: 116813, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33454649

RESUMEN

Compared with common anaerobic digestion, microbial electrolysis has been proven feasibly to accelerate biodegradation and methanogenesis with the advantages of effective electron flow regulation. However, its actual application and scale-up required a full understanding and further investigation on electrode size and distribution. For making full use of the space of the integrated reactor and improve methane recovery, an effective interior configuration was significant. In this work, three types of reactors with different cathode spatial distributions, that is, different cathode space ratios (ratio of cathode surface area to reaction region volume), were studied to form a good flow pattern for obtaining high methane production. Tracer experiments and numerical simulation were employed simultaneously for understanding the hydrodynamics characters of the interior flow field. The results showed that by increasing the cathode space ratio to 1.33 cm2/cm3 and 2 cm2/cm3, respectively, better flow patterns with the residence time of 1.336 times and 1.363 times of theoretical hydraulic retention time could be obtained. The stacked structure of nickel meshes was beneficial to prolong the contact time of contaminant and improve the mass transfer. Increasing the cathode space ratio could also enhance the electrochemical performance. Considering the organic removal, methane recovery, electrons generation, and material consumption, the recommended cathode space ratio was 1.33 cm2/cm3. With this structure, COD removal efficiency reached 93.2 ± 1.9% and 94.1 ± 1.5%, methane production rate reached 332.0 and 334.8 mL CH4/L reactor/day, and methane yield was 171.3 and 246.4 mL CH4/g COD under the HRT of 24 h and 36 h, respectively.


Asunto(s)
Reactores Biológicos , Electrones , Anaerobiosis , Electrólisis , Hidrodinámica , Metano
6.
J Hazard Mater ; 403: 123950, 2021 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-33264994

RESUMEN

Facing low reactivity/selectivity of oxygen reduction reaction (ORR) in electro-Fenton (EF), N, S atoms were introduced into carbon-based cathode. "End-on" O2 adsorption was achieved by adjusting electronic nature via N doping, while *OOH binding capability was tuned by spin density variation via S doping. Results showed the optimized N, S co-doped cathode presented a 42.47% improvement of H2O2 accumulation (7.95 ± 0.02 mg L-1 cm-2). According to density functional theory (DFT), N, S co-doped structure favored the "end-on" O2 adsorption as adsorption energy dropped to - 2.24 eV. Moreover, O-O/C-O bond lengths variation proved a possibility for *OOH desorption. The elaborated cathode was used in EF for sulfonamides (SAs) decay. A 100% removal rate of sulfadiazine (SDZ), sulfathiazole (STZ) and sulfadimethoxine (SDM) was achieved within 60 min, among which SDZ tended to be degraded easily. Because the absolute hardness (η) of those pollutants is ranked as follows: ηSDM> Î·STZ> Î·SDZ. Degradation pathways were proposed based on the detected byproducts, along with toxicity was evaluated by ecological structure-activity relationship (ECOSAR) program. Results showed that toxic intermediates generated were reduced or even disappeared. EF with N, S co-doped cathode provides a promising process for antibiotics wastewater treatment.


Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , Electrodos , Peróxido de Hidrógeno , Oxidación-Reducción , Sulfonamidas , Contaminantes Químicos del Agua/análisis
7.
Environ Technol ; 42(13): 1996-2008, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-31672098

RESUMEN

A charcoal-shaped catalyst NiFe2O4/Fe2O3 in electro-Fenton (EF) was synthesized by a facile precipitation approach via sintering products of oxalate co-precipitation. This obtained NiFe2O4/Fe2O3 catalyst was easily separated via an external magnetic field and was used as a heterogeneous electro-Fenton catalyst for rhodamine B (RhB, a target pollutant) degradation. Characteristics of NiFe2O4/Fe2O3 catalyst were assessed using scanning electron microscope (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Barrett-Emmett-Teller (BET), respectively. SEM results revealed that the proposed NiFe2O4/Fe2O3 was charcoal-shaped with the size in the range of 0.5-5 µm. Experiment results show that the EF process with the proposed catalyst could work in a wide pH range from 3 to 9. Under optimized conditions, estimated 90% RhB degradation was achieved in 60 min under the following conditions: 0.6 g/L NiFe2O4/Fe2O3, pH 3. Radical scavengers and electron spin resonance (ESR) spectra results demonstrated that the main oxidant species involved was ⋅OH, accounting for RhB degradation in EF. Moreover, according to our research on interfacial reaction, ⋅OH was mainly generated from the homogenous Fenton reaction rather than the surface Fenton reaction, stimulating by the dissolved Fe2+, Fe3+ and Ni2+ from catalyst. The reusability of NiFe2O4/Fe2O3 catalyst was evaluated for recycling the same catalyst for 5 runs. In conclusion, the facile fabrication NiFe2O4/Fe2O3 catalyst shows great potential in wastewater treatment with promising activity.


Asunto(s)
Carbón Orgánico , Peróxido de Hidrógeno , Catálisis , Concentración de Iones de Hidrógeno , Hierro
8.
Sci Total Environ ; 722: 137853, 2020 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-32179298

RESUMEN

In this work, nitrogen-doped cathodes for high H2O2 production and sulfathiazole (STZ) degradation in electro-Fenton (EF) systems were prepared by the carbonization of three carbon/nitrogen-enriched precursors. Among the cathodes elaborated from different precursors, the one using 1h-1,2,4-triazole-3,5-diamine as the precursor showed the best oxygen reduction reaction (ORR) ability with the normalized H2O2 accumulation of 9.49 ± 0.03 mg L-1 h-1 cm-2 compared to the other two N-containing cathodes. The enhanced H2O2 accumulation was attributed to the high electroactive surface area and pyrrolic N (60.45%) content. Regarding reactive oxygen species in the absence of Fe2+, aside from the H2O2, O2-and 1O2 were identified using spectroscopic techniques and chemical probes. As a result, a degradation and mineralization efficiency of 98.25 ± 0.14% and 70.57 ± 0.27% of STZ were attained in the 180-min treatment, mainly coming from the homogeneous OH from classical Fenton, anodic OH on BDD anode and direct/indirect oxidation of O2-and 1O2. In addition, the plausible degradation pathway of STZ was proposed based on the density functional theory (DFT) combined with experimental data derived by ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). The frontier orbital theory and Fukui function theoretically suggested the vulnerable sites of STZ for different active species including OH, O2- and 1O2. This study provides a new strategy for improving the ORR process and analyzing the generation and conversion of reactive oxygen species in the EF process.

9.
Environ Technol ; 41(6): 730-740, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30160203

RESUMEN

One of the bottlenecks often encountered in electro-Fenton technology is its low ability to produce hydrogen peroxide (H2O2). Thus, the hunt of suitable electrodes and reactor are a must to be tackled in order to improve the efficiency of the system. In this study, three-dimensional nickel foam was selected as cathode for in situ generating H2O2 efficiently and graphite was the control group in an enhanced oxygen mass transfer reactor. The micro-structure and electrochemical performance of electrodes were tested by scanning electron microscopy (SEM), X-ray diffraction (XRD), cyclic voltammetry (CV), electro-chemical impedance spectroscopy (EIS) and Tafel polarization techniques, respectively. The concentration of H2O2 produced by nickel foam cathode was 780.63 µmol/L and the removal efficiency of rhodamine B (RhB) was reached to 92.5% in 60 min. SEM and Tafel results showed that both nickel foam and graphite electrodes were porous structure cathodes. Moreover, CV and EIS experimental results indicated nickel foam electrode was controlled by charge transfer process while had a better transfer than graphite electrode. Electron spin resonance (ESR) spectra results demonstrated that the main oxidant species involved was ·OH, accounting for RhB degradation in electro-Fenton progress. Therefore, in terms of pollutant degradation in the electro-Fenton process, nickel foam electrode together with novel reactor was a promising technique.


Asunto(s)
Grafito , Contaminantes Químicos del Agua , Electrodos , Peróxido de Hidrógeno , Níquel
10.
J Hazard Mater ; 377: 249-258, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31170573

RESUMEN

For the first time, a biomass-derived porous carbon cathode (WDC) was fabricated via a facile one-step pyrolysis of recovered wood-waste without any post-treatment. The WDC along with pyrophosphate (PP) as electrolyte were used in electro-Fenton (EF) at pH 8 for sulfathiazole (STZ) treatment. The H2O2 accumulation capacity of WDC was optimized via the following parameters: pyrolysis temperature, applied current and electrolyte. Results showed that the WDC cathode prepared at 900 °C achieved the highest H2O2 accumulation (13.80 mg L-1 in 3 h) due to its larger electroactive surface area (28.81 cm2). Interestingly, it was found that PP decreased the decomposition rate of H2O2 in solution as compared to conventional electrolyte, which resulted in higher H2O2 accumulation. PP allowed operating EF at pH of 8 due to the formation of Fe2+-PP complexes in solution. Moreover, Fe2+-PP was able to activate oxygen to produce OH. In this way, the degradation of STZ took place through four main pathways: 1) via OH from the Fe2+-PP complex, 2) via OH from EF reactions, 3) via surface OH at the boron doped diamond electrode (BDD) and 4) via SO4- from BDD activation. Finally, microtox tests revealed that some toxic intermediates were generated during WDC/BDD/PP EF treatment, but they were removed at the end of the process.


Asunto(s)
Carbón Orgánico/química , Difosfatos/química , Sulfatiazol/química , Madera/química , Biomasa , Electrodos , Electrólitos , Compuestos Férricos/química , Depuradores de Radicales Libres/química , Peróxido de Hidrógeno , Concentración de Iones de Hidrógeno , Radical Hidroxilo , Hierro , Soluciones
11.
Environ Sci Pollut Res Int ; 26(12): 11928-11939, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30825125

RESUMEN

The first application of a novel electro-Fenton (EF) for coking wastewater (CW) treatment at the original pH (6.80) by using tripolyphosphate (TPP) ligand was proposed. Total organic carbon (TOC) decay of CW followed a pseudo-first kinetic rate constant with an apparent rate constant (kapp) of 1.07 × 10-2 min-1 for the EF in the presence of TPP (EF/TPP), which was 2.10 times higher than that of conventional EF (kapp = 5.10 × 10-3 min-1) working at pH 3. The high efficiency of EF/TPP at neutral pH was mainly attributed to the newly formed Fe-O-P coordination in the iron-ligand compound (Fe2+-TPP) supported by UV-absorption spectra results, activating oxygen to produce •OH and hence enhancing the oxidation capacity. Key operating parameters of CW mineralization by EF/TPP including Fe2+ concentration and pH value were systematically investigated. Excitation-emission matrix (EEM) spectra technique was used to assess the variance of dissolved organic matters during the EF/TPP process. Results showed an 81% mineralization of CW after 3 h electrolysis coupled with a low energy consumption (0.129 kWh g-1 TOC) which were obtained by the EF/TPP process. Microtox toxicity demonstrated that TPP could reduce the toxicity of raw CW and importantly, it showed that EF/TPP was effective for detoxification. Mechanism study via simulated matrix with similar components as CW revealed that •OH produced both from Fenton and Fe2+-TPP activation together with the generated active chlorine was responsible for CW mineralization. In summary, the TPP-assisted EF process was presented as a promising technique for extending coking wastewater treatment at near-neutral pH with a high mineralization.


Asunto(s)
Coque/análisis , Polifosfatos/química , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/química , Electrólisis , Peróxido de Hidrógeno/química , Concentración de Iones de Hidrógeno , Hierro/química , Cinética , Oxidación-Reducción , Aguas Residuales/química , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...