Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Exp Bot ; 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38753441

RESUMEN

Phosphorus nutrition has been known to influence floral transition in plants for a long time, but the underlying mechanism is unclear. Arabidopsis PHOSPHATE1 (PHO1) plays a critical role in phosphate translocation from roots to shoots, but whether and how it regulates floral transition is unknown. Here, we show that knockout mutation of PHO1 delays flowering under both long-day and short-day conditions. The late flowering of pho1 mutants can be partially rescued by Pi supplementation in rosettes or shoot apices. Grafting assay indicates that the late flowering of pho1 mutants is resulted from impaired phosphate translocation from roots to shoots. Knockout mutation of SPX1 and SPX2, two negative regulators of phosphate starvation response, partially rescues the late flowering of pho1 mutants. PHO1 is epistatic to PHO2, a negative regulator of PHO1, in flowering time regulation. Loss of PHO1 represses the expression of some floral activators, including FT encoding florigen, and induces the expression of some floral repressors in shoots. Genetic analyses indicate that at least jasmonic acid signaling is partially responsible for the late flowering of pho1 mutants. In addition, we find rice PHO1;2, the homology of PHO1, plays a similar role in floral transition. These results suggest that PHO1 integrates phosphorus nutrition and flowering time and could be used as a potential target in modulating phosphorus nutrition-mediated flowering time in plants.

2.
Trends Plant Sci ; 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38582687

RESUMEN

Plasma membrane H+-ATPases (PMAs) pump H+ out of the cytoplasm by consuming ATP to generate a membrane potential and proton motive force for the transmembrane transport of nutrients into and out of plant cells. PMAs are involved in nutrient acquisition by regulating root growth, nutrient uptake, and translocation, as well as the establishment of symbiosis with arbuscular mycorrhizas. Under nutrient stresses, PMAs are activated to pump more H+ and promote organic anion excretion, thus improving nutrient availability in the rhizosphere. Herein we review recent progress in the physiological functions and the underlying molecular mechanisms of PMAs in the efficient acquisition and utilization of various nutrients in plants. We also discuss perspectives for the application of PMAs in improving crop production and quality.

3.
Front Physiol ; 14: 1205290, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37383148

RESUMEN

Despite the physiological significance of effective CO2 diffusion across biological membranes, the underlying mechanism behind this process is not yet resolved. Particularly debatable is the existence of CO2-permeable aquaporins. The lipophilic characteristic of CO2 should, according to Overton's rule, result in a rapid flux across lipid bilayers. However, experimental evidence of limited membrane permeability poses a challenge to this idea of free diffusion. In this review, we summarized recent progress with regard to CO2 diffusion, and discussed the physiological effects of altered aquaporin expression, the molecular mechanisms of CO2 transport via aquaporins, and the function of sterols and other membrane proteins in CO2 permeability. In addition, we highlight the existing limits in measuring CO2 permeability and end up with perspectives on resolving such argument either by determining the atomic resolution structure of CO2 permeable aquaporins or by developing new methods for measuring permeability.

4.
Bio Protoc ; 13(11): e4692, 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37323639

RESUMEN

Phosphorus is an essential nutrient for plants. Green algae usually store excess P as polyphosphate (polyP) in the vacuoles. PolyP, a linear chain of three to hundreds of phosphate residues linked by phosphoanhydride bonds, is important for cell growth. Based on the previous method of polyP purification with silica gel columns (Werner et al., 2005; Canadell et al., 2016) in yeast cells, we developed a protocol to purify and determine the total P and polyP in Chlamydomonas reinhardtii by a quick, simplified, and quantitative method. We use hydrochloric acid or nitric acid to digest polyP or total P in dried cells and analyze P content using the malachite green colorimetric method. This method may be applied to other microalgae.

5.
Plant Physiol Biochem ; 197: 107642, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36989993

RESUMEN

Crops often suffer from simultaneous limitations of multiple nutrients in soils, including nitrogen (N), phosphorus (P) and potassium (K), which are three major macronutrients essential for ensuring growth and yield. Although plant responses to individual N, P, and K deficiency have been well documented, our understanding of the responses to combined nutrient deficiencies and the crosstalk between nutrient starvation responses is still limited. Here, we compared the physiological responses in rice under seven kinds of single and multiple low nutrient stress of N, P and K, and used RNA sequencing approaches to compare their transcriptome changes. A total of 13,000 genes were found to be differentially expressed under all these single and multiple low N/P/K stresses, and 66 and 174 of them were shared by all these stresses in roots and shoots, respectively. Functional enrichment analyses of the DEGs showed that a group of biological and metabolic processes were shared by these low N/P/K stresses. Comparative analyses indicated that DEGs under multiple low nutrient stress was not the simple summation of single nutrient stress. N was found to be the predominant factor affecting the transcriptome under combined nutrient stress. N, P, or K availability exhibited massive influences on the transcriptomic responses to starvation of other nutrients. Many genes involved in nutrient transport, hormone signaling, and transcriptional regulation were commonly responsive to low N/P/K stresses. Some transcription factors were predicted to regulate the expression of genes that are commonly responsive to N, P, and K starvations. These results revealed the interactions between N, P, and K starvation responses, and will be helpful for further elucidation of the molecular mechanisms underlying nutrient interactions.


Asunto(s)
Oryza , Oryza/metabolismo , Regulación de la Expresión Génica de las Plantas , Perfilación de la Expresión Génica , Transcriptoma/genética , Nutrientes , Estrés Fisiológico/genética , Raíces de Plantas/metabolismo
6.
Environ Res ; 226: 115676, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36907344

RESUMEN

Efficient abatement of antibiotics from livestock wastewater is in urgent demand, but still challenging. In this study, alkaline-modified biochar with larger surface area (130.520 m2 g-1) and pore volume (0.128 cm3 g-1) was fabricated and explored for the adsorption of different types of antibiotics from livestock wastewater. Batch adsorption experiments demonstrated that the adsorption process was mainly determined by chemisorption and was heterogeneous, which could be moderately affected by the variations of solution pH (3-10). Furthermore, the computational analysis based on density functional theory (DFT) indicated that the -OH groups on biochar surface could serve as the dominant active sites for antibiotics adsorption due to the strongest adsorption energies between antibiotics and -OH groups. In addition, the antibiotics removal was also evaluated in multi-pollutants system, where biochar performed synergistic adsorption towards Zn2+/Cu2+ and antibiotics. Overall, these findings not only deepen our understandings on the adsorption mechanism between biochar and antibiotics, but also promote the application of biochar in the remediation of livestock wastewater.


Asunto(s)
Antibacterianos , Contaminantes Químicos del Agua , Animales , Aguas Residuales , Ganado , Adsorción , Descontaminación , Carbón Orgánico/química , Contaminantes Químicos del Agua/análisis , Cinética
7.
J Exp Bot ; 74(6): 1957-1973, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36520996

RESUMEN

Cauline leaves on the inflorescence stem of Arabidopsis thaliana may play important roles in supplying photosynthetic products to sinks, such as floral organs. Flag leaves in rice (Oryza sativa) have a higher photosynthetic capacity than other leaves, and are crucial for increasing grain yield. However, the detailed properties of stomata in cauline and flag leaves have not been investigated. In Arabidopsis, stomatal conductance and CO2 assimilation rate were higher in cauline leaves under white light than in rosette leaves, consistent with higher levels of plasma membrane (PM) H+-ATPase, a key enzyme for stomatal opening, in guard cells. Moreover, removal of cauline leaves significantly reduced the shoot biomass by approximately 20% and seed production by approximately 46%. In rice, higher stomatal density, stomatal conductance, and CO2 assimilation rate were observed in flag leaves than in fully expanded second leaves. Removal of the flag leaves significantly reduced grain yield by approximately 49%. Taken together, these results show that cauline and flag leaves have important roles in seed production and grain yield through enhanced stomatal conductance and CO2 assimilation rate.


Asunto(s)
Arabidopsis , Oryza , Arabidopsis/metabolismo , Oryza/metabolismo , Estomas de Plantas/metabolismo , Dióxido de Carbono/metabolismo , Hojas de la Planta/metabolismo , Fotosíntesis , Semillas/metabolismo , Grano Comestible/metabolismo
8.
Int J Mol Sci ; 23(22)2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-36430382

RESUMEN

Plasma membrane (PM) H+-ATPase is a master enzyme involved in various plant physiological processes, such as stomatal movements in leaves and nutrient uptake and transport in roots. Overexpression of Oryza sativa PM H+-ATPase 1 (OSA1) has been known to increase NH4+ uptake in rice roots. Although electrophysiological and pharmacological experiments have shown that the transport of many substances is dependent on the proton motive force provided by PM H+-ATPase, the exact role of PM H+-ATPase on the uptake of nutrients in plant roots, especially for the primary macronutrients N, P, and K, is still largely unknown. Here, we used OSA1 overexpression lines (OSA1-oxs) and gene-knockout osa1 mutants to investigate the effect of modulation of PM H+-ATPase on the absorption of N, P, and K nutrients through the use of a nutrient-exhaustive method and noninvasive microtest technology (NMT) in rice roots. Our results showed that under different concentrations of P and K, the uptake rates of P and K were enhanced in OSA1-oxs; by contrast, the uptake rates of P and K were significantly reduced in roots of osa1 mutants when compared with wild-type. In addition, the net influx rates of NH4+ and K+, as well as the efflux rate of H+, were enhanced in OSA1-oxs and suppressed in osa1 mutants under low concentration conditions. In summary, this study indicated that overexpression of OSA1 stimulated the uptake rate of N, P, and K and promoted flux rates of cations (i.e., H+, NH4+, and K+) in rice roots. These results may provide a novel insight into improving the coordinated utilization of macronutrients in crop plants.


Asunto(s)
Oryza , Oryza/metabolismo , Raíces de Plantas/metabolismo , ATPasas de Translocación de Protón/genética , ATPasas de Translocación de Protón/metabolismo , Membrana Celular/metabolismo , Nutrientes
9.
Sci Total Environ ; 831: 154917, 2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35364170

RESUMEN

Animal manures are reported as good substitutes for chemical fertilizers to mobilize soil phosphorus (P). However, the mechanisms on how different types of manures regulate microbial biomass involved in P mobilization remain unclear. In this study, we conducted a two-year field experiment to investigate variations in soil microbial biomass carbon (MBC) and P (MBP) and P fractions after 30% animal manures substitution (pig manure (PM), chicken manure (CM), and dairy manure (DM)) in paddy soil. Furthermore, a 30-day incubation experiment was used to explore the mechanisms of soil P transformation induced by 100% manures addition. Two-year field experiment results showed that, compared to the chemical NPK fertilizer, 30% manure substitution didn't influence rice and wheat yields significantly but decreased soil total P loss from runoff by 3.2%. However, 30% manure substitution significantly enhanced MBC and MBP by 11.3-18.4% and 57.1-81.2%, respectively, which also promoted the transformation of moderately labile P (M-P) to labile P (L-P). Moreover, the incubation experiment also convinced that all manures caused higher MBC than chemical P fertilizer. Meanwhile, compared to the no P fertilizer, manures increased L-P and organic P by 2.7%-14.7% and 6.4%-20.0%, respectively. Redundancy analysis indicated that soil MBC/MBP ratio was the main factor to soil L-P and M-P, indicating that animal manures can improve soil microbial abundance and thus promote M-P to L-P in soil. Among three animal manures, PM could improve the mobilization potential of P mostly, due to the highest C source activity by 13C NMR analysis. Our study indicated that animal manures especially PM can be considered as a good candidate for agricultural P management in paddy soils because of their capacity to promote soil P transformation.


Asunto(s)
Microbiota , Oryza , Agricultura/métodos , Animales , Carbono/análisis , Fertilizantes/análisis , Estiércol , Fósforo/análisis , Suelo/química , Porcinos
10.
Plant Cell Rep ; 41(4): 995-1012, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35195770

RESUMEN

KEY MESSAGE: Botrytis cinerea induced expression of 15 LrWRKY genes; overexpression of LrWRKY39 and LrWRKY41a increased resistance and susceptibility, respectively, to B. cinerea in a manner related to SA and JA signaling. WRKY transcription factors (TFs), a large family, play important roles in coping with biotic stresses. Lilium regale Wilson is a lily species with strong resistance to fungi and viruses; however, functional characterization of LrWRKY TFs remains very limited. Here, a total of 25 LrWRKY members were identified from the L. regale transcriptome, and 15 LrWRKY genes were significantly induced by Botrytis cinerea. Based on their structural features, B. cinerea-responsive LrWRKY genes could be classified into six subgroups (Groups I, IIa-d, and III), and sequence alignment showed that 12 LrWRKY proteins have a well-conserved WRKYGQK domain, while 3 LrWRKYs have a variant sequence (WRKYGKK or WRMYEQK). Quantitative RT-PCR analysis revealed tissue-specific expression of B. cinerea-responsive LrWRKY genes and their expression profiles in response to defense-related hormones salicylic acid (SA), methyl jasmonate (MeJA) and hydrogen peroxide. LrWRKY39 and LrWRKY41a, which encode two LrWRKY TFs with different three-dimensional (3D) models of the WRKY domain, were cloned, and both proteins were targeted to the nucleus. Overexpression of LrWRKY39 and LrWRKY41a in Arabidopsis thaliana increased the resistance and susceptibility to B. cinerea, respectively, compared to the wild type. Similar results were also observed in tobacco and lily (L. longiflorum 'Snow Queen') by transient transformation analyses. Their distinct roles may be related to changes in the transcript levels of SA-/JA-responsive genes. Our results provide new insights into B. cinerea-responsive LrWRKY members and the biological functions of two different 3D models of LrWRKY TFs in defense responses to B. cinerea infection.


Asunto(s)
Arabidopsis , Lilium , Arabidopsis/genética , Botrytis/fisiología , Ciclopentanos/metabolismo , Ciclopentanos/farmacología , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas , Lilium/genética , Lilium/metabolismo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Ácido Salicílico/metabolismo , Ácido Salicílico/farmacología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
11.
Artículo en Inglés | MEDLINE | ID: mdl-35035509

RESUMEN

OBJECTIVE: Nicorandil has been widely used for the treatment of angina pectoris and myocardial infarction. The purpose of this study was to investigate whether nicorandil plays a protective role in exhaustive exercise (EE)-induced myocardial injury. METHODS: Here, we applied the rat EE model and treated them with exercise preconditioning (EP, reported to protect the heart) or different doses of nicorandil gavage, respectively, to explore whether there are protective effects of single EP or nicorandil or a combination of both and the potential mechanism. Forty-nine male Sprague Dawley rats were randomly divided into control, EE, EP + EE, nicorandil (with low, middle, and high dose) + EE, and EP + nicorandil (middle dose) + EE. Blood samples and myocardial tissues were collected to analyze the myocardial injury-related index. RESULTS: EE induced myocardial structural damage and altered the myocardial injury markers, which were partially reversed by pretreatment of nicorandil. In addition, oxidative stress and inflammation lead to the accumulation of reactive oxygen species (ROS) products and further damage to the myocardium, while pretreatment of nicorandil reduces the oxidative stress response and inflammation. Moreover, nicorandil suppressed the myocardial apoptosis induced by EE, as indicated by a decrease of Bax and caspase-3 expression and an increase of Bcl-2 expression. Finally, the pathway in which nicorandil plays a role may be involved in the endothelial nitric oxide synthase (eNOS)/nitric oxide (NO) pathway. Pretreatment of nicorandil increased the protein level of myocardial eNOS and NO production. CONCLUSION: Our result demonstrated that nicorandil has protective effects in EE-induced myocardial injury with dose-dependent effects. A combination of nicorandil and EP can further improve the protective effects. Taken together, nicorandil can be potentially used as an intervention method in EE-induced myocardial injury.

12.
Plant Physiol Biochem ; 168: 10-16, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34607207

RESUMEN

Increase of crop yield is always the desired goal, manipulation of genes in relation to plant growth is a shortcut to promote crop yield. The plasma membrane (PM) H+-ATPase is the plant master enzyme; the energy yielded by ATP hydrolysis pumps H+ out of cells, establishes the membrane potential, maintains pH homeostasis and provides the proton-motive force required for transmembrane transport of many materials. PM H+-ATPase is involved in root nutrient uptake, epidermal stomatal opening, phloem sucrose loading and unloading, and hypocotyl cell elongation. In this review, we summarize the recent progresses in roles of PM H+-ATPase in nutrient uptake and light-induced stomatal opening and discuss the pivotal role of PM H+-ATPase in crop yield improvement and its potential application in agricultural production by modulating the expression of PM H+-ATPase in crops.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , ATPasas de Translocación de Protón , Transporte Biológico , Membrana Celular/metabolismo , Hipocótilo/metabolismo , ATPasas de Translocación de Protón/genética , ATPasas de Translocación de Protón/metabolismo
13.
J Plant Physiol ; 261: 153419, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33915366

RESUMEN

Zinc (Zn) is an essential micronutrient for plants and animals. Because of its low availability in arable soils worldwide, Zn deficiency is becoming a serious agricultural problem resulting in decreases of crop yield and nutritional quality. Plants have evolved multiple responses to adapt to low levels of soil Zn supply, involving biochemical and physiological changes to improve Zn acquisition and utilization, and defend against Zn deficiency stress. In this review, we summarize the physiological and biochemical adaptations of plants to Zn deficiency, the roles of transporters and metal-binding compounds in Zn homeostasis regulation, and the recent progresses in understanding the sophisticated regulatory mechanisms of Zn deficiency responses that have been made by molecular and genetic analyses, as well as diverse 'omics' studies. Zn deficiency responses are tightly controlled by multiple layers of regulation, such as transcriptional regulation that is mediated by transcription factors like F-group bZIP proteins, epigenetic regulation at the level of chromatin, and post-transcriptional regulation mediated by small RNAs and alternative splicing. The insights into the regulatory network underlying Zn deficiency responses and the perspective for further understandings of molecular regulation of Zn deficiency responses have been discussed. The understandings of the regulatory mechanisms will be important for improving Zn deficiency tolerance, Zn use efficiency, and Zn biofortification in plants.


Asunto(s)
Homeostasis , Fenómenos Fisiológicos de las Plantas , Plantas/química , Zinc/deficiencia , Proteínas de Transporte de Membrana/metabolismo , Plantas/metabolismo
14.
Sci Adv ; 7(12)2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33731345

RESUMEN

The hab1-1abi1-2abi2-2pp2ca-1 quadruple mutant (Qabi2-2) seedlings lacking key negative regulators of ABA signaling, namely, clade A protein phosphatases type 2C (PP2Cs), show more apoplastic H+ efflux in roots and display an enhanced root growth under normal medium or water stress medium compared to the wild type. The presence of low ABA concentration (0.1 micromolar), inhibiting PP2C activity via monomeric ABA receptors, enhances root apoplastic H+ efflux and growth of the wild type, resembling the Qabi2-2 phenotype in normal medium. Qabi2-2 seedlings also demonstrate increased hydrotropism compared to the wild type in obliquely-oriented hydrotropic experimental system, and asymmetric H+ efflux in root elongation zone is crucial for root hydrotropism. Moreover, we reveal that Arabidopsis ABA-insensitive 1, a key PP2C in ABA signaling, interacts directly with the C terminus of Arabidopsis plasma membrane H+-dependent adenosine triphosphatase 2 (AHA2) and dephosphorylates its penultimate threonine residue (Thr947), whose dephosphorylation negatively regulates AHA2.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/metabolismo , ATPasas de Translocación de Protón/genética , ATPasas de Translocación de Protón/metabolismo , Plantones
15.
ACS Omega ; 6(4): 3259-3266, 2021 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-33553944

RESUMEN

Phosphorus (P) is an essential nutrient for crop production, and animal manures are rich in P. When using animal manures as alternatives to synthetic fertilizers, it is important to know the kinetics of P release from different animal manures and the forms, amounts, and dynamics of P in manure-treated soils. We chose four types of manure, viz., pig manure (PM), chicken manure (CM), dairy manure (DM), and commercial organic compost (OM), and evaluated the P release rate and availability in water solution and flooded/upland paddy soils. The WEP/total P (TP) and the water-extractable P (WEP) concentrations are highest for OM with the order: OM > PM > CM > DM. An increase in soil Olsen-P concentration was observed for the addition of manure with a varying application rate of P from low to moderate to high. The release capacity of Olsen-P in flooded conditions was higher than that in upland conditions. Under the flooded soil, PM and OM have faster release rates than CM and OM in the upland soil. Moreover, PM significantly increased available P by 29% in the flooded paddy soil while moderately inorganic P increased by 17% in the upland paddy soil. Olsen-P has a significant linear relationship with available P (Resin-P + NaHCO3-Pi; R 2 = 0.104; P < 0.01) and moderately inorganic P (NaOH-Pi + HCl-P; R 2 = 0.286; P < 0.01). The structural equation model showed that the organic input was beneficial to the conversion of moderately inorganic P to available P. Our results indicate that PM amendment promotes the release of available P in paddy soil.

16.
Sci Total Environ ; 775: 145841, 2021 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-33621881

RESUMEN

The present study examined potential effect modifiers between polycyclic aromatic hydrocarbon (PAH) exposure and the development of rheumatoid arthritis (RA) and elucidated the relationship between PAHs and RA in subgroups using data from the National Health and Nutrition Examination Survey (NHANES) (2003-2014). The relatedness between eight PAH metabolites and RA in the whole population and different subgroups was tested using multivariable logistic regression analyses. This study included 6297 participants, including 400 RA patients and 5897 non-RA control participants, with full data. Compared to the lowest quartiles, risk of RA was increased in population with the highest quartiles of 1-hydroxynaphthalene (1-NAP), 2-NAP, 2-hydroxyfluorene (2-FLU), and 3-FLU in a bias factor corrected model. The associations between urinary PAH metabolites and RA were prominent in female, young and middle-aged, obese, smoking and alcohol-consuming populations in the subgroup analysis. Our results demonstrated that PAH exposure was related to RA, and the relationship between urinary PAH metabolites and RA differed between subgroups and depended on specific PAH metabolites.


Asunto(s)
Artritis Reumatoide , Hidrocarburos Policíclicos Aromáticos , Artritis Reumatoide/epidemiología , Biomarcadores , Femenino , Humanos , Persona de Mediana Edad , Encuestas Nutricionales , Obesidad , Fumar
17.
Nat Commun ; 12(1): 735, 2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33531490

RESUMEN

Nitrogen (N) and carbon (C) are essential elements for plant growth and crop yield. Thus, improved N and C utilisation contributes to agricultural productivity and reduces the need for fertilisation. In the present study, we find that overexpression of a single rice gene, Oryza sativa plasma membrane (PM) H+-ATPase 1 (OSA1), facilitates ammonium absorption and assimilation in roots and enhanced light-induced stomatal opening with higher photosynthesis rate in leaves. As a result, OSA1 overexpression in rice plants causes a 33% increase in grain yield and a 46% increase in N use efficiency overall. As PM H+-ATPase is highly conserved in plants, these findings indicate that the manipulation of PM H+-ATPase could cooperatively improve N and C utilisation, potentially providing a vital tool for food security and sustainable agriculture.


Asunto(s)
Membrana Celular/metabolismo , Oryza/enzimología , Oryza/metabolismo , Proteínas de Plantas/metabolismo , ATPasas de Translocación de Protón/metabolismo , Compuestos de Amonio/metabolismo , Transporte Biológico , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Oryza/fisiología , Fotosíntesis/genética , Fotosíntesis/fisiología , Hojas de la Planta/enzimología , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Raíces de Plantas/enzimología , Raíces de Plantas/metabolismo , Raíces de Plantas/fisiología
18.
Mol Plant ; 14(5): 838-846, 2021 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-33515767

RESUMEN

Phosphorus is an essential nutrient for plants. It is stored as inorganic phosphate (Pi) in the vacuoles of land plants but as inorganic polyphosphate (polyP) in chlorophyte algae. Although it is recognized that the SPX-Major Facilitator Superfamily (MFS) and VPE proteins are responsible for Pi influx and efflux, respectively, across the tonoplast in land plants, the mechanisms that underlie polyP homeostasis and the transition of phosphorus storage forms during the evolution of green plants remain unclear. In this study, we showed that CrPTC1, encoding a protein with both SPX and SLC (permease solute carrier 13) domains for Pi transport, and CrVTC4, encoding a protein with both SPX and vacuolar transporter chaperone (VTC) domains for polyP synthesis, are required for vacuolar polyP accumulation in the chlorophyte Chlamydomonas reinhardtii. Phylogenetic analysis showed that the SPX-SLC, SPX-VTC, and SPX-MFS proteins were present in the common ancestor of green plants (Viridiplantae). The SPX-SLC and SPX-VTC proteins are conserved among species that store phosphorus as vacuolar polyP and absent from genomes of plants that store phosphorus as vacuolar Pi. By contrast, SPX-MFS genes are present in the genomes of streptophytes that store phosphorus as Pi in the vacuoles. These results suggest that loss of SPX-SLC and SPX-VTC genes and functional conservation of SPX-MFS proteins during the evolution of streptophytes accompanied the change from ancestral polyP storage to Pi storage.


Asunto(s)
Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Proteínas de Plantas/genética , Vacuolas/metabolismo , Homeostasis , Chaperonas Moleculares/metabolismo , Fósforo , Filogenia , Proteínas de Plantas/metabolismo , Polifosfatos , Viridiplantae/genética , Viridiplantae/metabolismo
19.
Mol Plant Microbe Interact ; 34(6): 631-644, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33496609

RESUMEN

Trichoderma is a genus of filamentous fungi that play notable roles in stimulating plant growth after colonizing the root surface. However, the key proteins and molecular mechanisms governing this stimulation have not been completely elucidated. In this study, Trichoderma guizhouense NJAU 4742 was investigated in a hydroponic culture system after interacting with cucumber roots. The total proteins of the fungus were characterized, and the key metabolic pathways along with related genes were analyzed through proteomic and transcriptomic analyses. The roles played by the regulated proteins during the interaction between plants and NJAU 4742 were further examined. The intracellular or extracellular proteins from NJAU 4742 and extracellular proteins from cucumber were quantified, and the high-abundance proteins were determined which were primarily involved in the shikimate pathway (tryptophan, tyrosine, and phenylalanine metabolism, auxin biosynthesis, and secondary metabolite synthesis). Moreover, 15N-KNO3 labeling analysis indicated that NJAU 4742 had a strong ability to convert nitrogenous amino acids, nitrate, nitrile, and amines into ammonia. The auxin synthesis and ammonification metabolism pathways of NJAU 4742 significantly contributed to plant growth. The results of this study demonstrated the crucial metabolic pathways involved in the interactions between Trichoderma spp. and plants.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Cucumis sativus , Trichoderma , Cucumis sativus/genética , Hypocreales , Raíces de Plantas , Proteómica
20.
J Endourol ; 35(7): 973-978, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33218256

RESUMEN

Objective: To find out a better criterion to identify septic shock patients after flexible ureteroscopic lithotripsy (FUL). Materials and Methods: In total, 2364 patients who underwent the FUL procedure were enrolled in the study. The demographics and preoperative results of laboratory tests of the patients were collected. The postoperative white blood cell (WBC), systemic inflammatory response syndrome (SIRS), and quick sequential (sepsis-related) organ failure assessment score (qSOFA) were assessed 2 hours after FUL. The predictive efficacy was measured by sensitivity, specificity, positive and negative predictive value, and area under the receiver's operating characteristic curve (AUROC). Results: A total of 15 (0.63%) patients developed septic shock. There were 86 (3.64%) patients who were SIRS positive and 69 (2.92%) patients who were qSOFA positive. The pre- and postoperative WBC ratios in septic shock patients and normal patients were 2.50 ± 1.55 and 0.69 ± 0.24, respectively (p < 0.001). For sensitivity and negative predictive value, all reached 100%. For specificity, qSOFA was 97.70%, SIRS was 96.98%, and SIRS combining pre- and postoperative WBC ratio (the new criterion) was 99.79%. The new criterion had statistically significant higher specificity than SIRS or qSOFA (p < 0.001 for both), but when comparing SIRS and qSOFA, it had statistically insignificant specificity (p = 0.142). For positive predictive value, qSOFA was 21.73%, SIRS was 17.44%, and the new criterion was 75%. qSOFA and SIRS had similar AUROC (0.989 for qSOFA and 0.985 for SIRS), both lower than the new criterion (AUROC: 0.999). Conclusions: SIRS combined with pre- and postoperative WBC ratio has a much better specificity and positive predictive value than SIRS or qSOFA alone. It has 99.79% specificity and 75% positive predictive value, and as high as 100% sensitivity and negative predictive value.


Asunto(s)
Litotricia , Sepsis , Choque Séptico , Mortalidad Hospitalaria , Humanos , Leucocitos , Pronóstico , Curva ROC , Estudios Retrospectivos , Sepsis/diagnóstico , Sepsis/etiología , Choque Séptico/diagnóstico , Choque Séptico/etiología , Síndrome de Respuesta Inflamatoria Sistémica/diagnóstico , Síndrome de Respuesta Inflamatoria Sistémica/etiología , Ureteroscopía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...