Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Antioxidants (Basel) ; 13(4)2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38671914

RESUMEN

In this paper, complexes of soluble dietary fiber (SDF) and polyphenols (PPs) isolated from lotus roots were prepared (SDF-PPs), as well as physical mixtures (SDF&PPs), which were given to high-fat-diet (HFD)-fed mice. The results demonstrated that SDF-PPs improve lipid levels and reverse liver injury in hyperlipidemic mice. Western blotting and real-time quantitative Polymerase Chain Reaction (RT-qPCR) results showed that SDF-PPs regulated liver lipids by increasing the phosphorylation of Adenine monophosphate activated protein kinase (AMPK), up-regulating the expression of Carnitine palmitoyltransferase1 (CPT1), and down-regulating the expression of Fatty acid synthase (FAS) and 3-hydroxy-3-methyl glutaryl coenzyme A (HMG-CoA), as well as the transcription factor sterol-regulatory element binding protein (SPEBP-1) and its downstream liposynthesis genes. Additionally, the intervention of SDF-PPs could modulate the composition of intestinal gut microbes, inducing an increase in Lachnospiraceae and a decrease in Desulfovibrionaceae and Prevotellaceae in high-fat-diet-fed mice. Thus, the research provides a theoretical basis for the application of lotus root active ingredients in functional foods and ingredients.

2.
Foods ; 13(2)2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38254520

RESUMEN

Intake of polyphenol-modified wheat products has the potential to reduce the incidence of chronic diseases. In order to determine the modification effect of polyphenols on wheat gluten protein, the effects of grape skin anthocyanin extract (GSAE, additional amounts of 0.1%, 0.2%, 0.3%, 0.4%, and 0.5%, respectively) on the microstructure and physicochemical properties of gluten protein were investigated. The introduction of GSAE improves the maintenance of the gluten network and increases viscoelasticity, as evidenced by rheological and creep recovery tests. The tensile properties of gluten protein were at their peak when the GSAE level was 0.3%. The addition of 0.5% GSAE may raise the denaturation temperature of gluten protein by 6.48 °C-9.02 °C at different heating temperatures, considerably improving its thermal stability. Furthermore, GSAE enhanced the intermolecular hydrogen bond of gluten protein and promoted the conversion of free sulfhydryl groups to disulfide bonds. Meanwhile, the GSAE treatment may also lead to protein aggregation, and the average pore size of gluten samples decreased significantly and the structure became denser, indicating that GSAE improved the stability of the gluten spatial network. The positive effects of GSAE on gluten protein properties suggest the potential of GSAE as a quality enhancer for wheat products.

3.
Int J Biol Macromol ; 258(Pt 1): 128787, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38103661

RESUMEN

pH-responsive intelligent films for food freshness monitoring have attracted great attentions recently. In this study, several intelligent films based on chitosan (CS), polyvinyl alcohol (PVA), and grape skin anthocyanin (GSA) were prepared, and the effect of film-forming solution pH on the properties of intelligent films was investigated. The results of SEM, FTIR, XRD and TGA displayed that the hydrogen bond between CS and GSA was strong at strong acidic conditions (2.0-2.5), and it weakened at weak acidic conditions (3.0-4.5). Meanwhile, the hydrogen bond between PVA and GSA was negligible under strong acidic conditions, and it appeared under weak acidic conditions. Consequently, the films fabricated under weak acidic conditions displayed lower water solubility, lower water vapor permeability, and higher elongation at break. The tensile strength of films increased firstly and subsequently decreased with pH increasing, reaching a maximum value of 31.44 MPa at pH 3.5. Additionally, the films prepared at pH 2.5 and 4.0 showed the best color responsiveness to ammonia and acetic acid, respectively. Overall, the intelligent films prepared under variant pH have the potential to realize the goal of monitoring the freshness of different types of food, thereby expanding the application subject of anthocyanins-based intelligent films.


Asunto(s)
Quitosano , Vitis , Ácido Acético , Antocianinas , Amoníaco , Alcohol Polivinílico , Concentración de Iones de Hidrógeno , Embalaje de Alimentos
4.
Foods ; 12(24)2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38137250

RESUMEN

Bound phenolic compounds in the melon pulp have seldom been investigated. This study revealed considerable differences in the total phenolic content (TPC) and antioxidant activity of the free and bound phenolic extracts in the pulps of six melon varieties from Hainan Province, China. Naixiangmi and Yugu demonstrated the highest free TPC, while Meilong showed the highest bound and total TPC and antioxidant activity. UHPLC-QQQ-MS identified and quantified 30 phenolic compounds. The melon cultivars markedly differed in the amount and content of their free and bound phenolic compounds. Xizhoumi No. 25 and Meilong afforded the most phenolic compounds. Hongguan emerged with the highest free phenolic compound content and total content of phenolic compounds; however, Meilong possessed the highest bound phenolic compound content. Hierarchical cluster analysis divided the melon varieties into four different taxa. The present study provides a scientific basis for developing the health-promoting effects of melon pulp.

5.
Ecotoxicol Environ Saf ; 267: 115634, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37897978

RESUMEN

Arsenic (As) is a notorious toxic contamination in marine environments, while the toxicity and health risk of As is highly dependent on As species in seafoods. In this study, we hypothesized that the species-specific As bioaccumulation and species resulted in species-specific healthy risk of As in seaweeds. To test the hypothesis, we collected 10 common edible seaweeds from the coast of Hainan Island in South China Sea. Then we comparatively quantified concentration of total As and 5 major As species [AsB, DMA, MMA, As(III), and As(V)] in seaweeds. The results revealed that the concentrations of total As varied significantly among 10 seaweed species. Specially, the highest total As concentration were found in brown seaweeds, followed by red seaweeds, and green seaweeds. Furthermore, the percentage of 5 As species to total As differed significantly among 10 seaweeds. The percentage of AsB was highest in Caulerpa lentillifera (53%) and lowest in Sargassum oligocystum (13%), while that of As(V) was lowest in Caulerpa lentillifera (21%) and highest in Sargassum oligocystum (81%). The iAs [As(III) + As(V)] exhibited highest value in brown seaweeds and least value in green seaweeds. The potential human health risk assessment indicated that the consumption of brown seaweeds of Sargassum oligocystum and Sargassum polycystum could cause a considerable carcinogenic risk and non-carcinogenic risk to residents. Overall, our findings here largely validated our hypothesis that the species-specific As bioaccumulation and As species had great significance to healthy risk of As in seaweeds.


Asunto(s)
Arsénico , Sargassum , Algas Marinas , Humanos , Arsénico/toxicidad , Bioacumulación , China , Medición de Riesgo
6.
Foods ; 12(18)2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37761043

RESUMEN

Little information is available regarding polyphenol variations in the food processing of edible and medicinal red seaweed, Betaphycus gelatinum. This study investigated the effects of Lactobacillus brevis fermentation on total polyphenol content (TPC), polyphenol profile, and antioxidant activity in Betaphycus gelatinum pretreated by ultrasound-assisted mild acid hydrolysis for the first time. During 60 h of fermentation, the viable colony number significantly increased, pH significantly decreased, and reducing sugar content significantly decreased initially, then significantly increased. Free TPC significantly increased to 865.42 ± 29.29 µg GAE/g DW (163.09% increase) with increasing antioxidant activity, while bound TPC significantly decreased to 1004.90 ± 87.32 µg GAE/g DW (27.69% decrease) with decreasing antioxidant activity. Furthermore, 27 polyphenol compounds were identified by ultra-high-performance liquid chromatography with Xevo triple quadrupole mass spectrometry. In total, 19 and 23 free polyphenols and 24 and 20 bound polyphenols were identified before and after fermentation, respectively. Before fermentation, bound trans-cinnamic acid (56.75%), bound rosmarinic acid (26.62%), and free trans-cinnamic acid (3.85%) were the main components. After fermentation, free rosmarinic acid (43.57%), bound trans-cinnamic acid (15.19%), bound rosmarinic acid (13.33%), and free trans-cinnamic acid (5.99%) were the main components. These results provide information for the food processing of Betaphycus gelatinum.

7.
Front Nutr ; 10: 1232251, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37693252

RESUMEN

This study investigated the effects of rice preparation using different degrees of milling (DOM) from 0% to 13% on the nutritional composition, functional properties, major volatile compounds and safety of brown rice tea (BRT). We found that 2% DOM reduced 52.33% of acrylamide and 31.88% of fluorescent AGEs. When DOM was increased from 0% to 13%, the total phenolic content (TPC) of brown rice tea decreased by 48.12%, and the total flavonoid content (TFC) and condensed tannin content (CTC) also decreased significantly, with the smallest decrease at 2% DOM. In addition, the inhibitory activities of α-amylase, α-glucosidase and pancreatic lipase as well as the antioxidant activity also decreased gradually. Analysis by electronic nose and gas chromatography-mass spectrometry (GC-MS) showed that alkanes, furans, aldehydes, pyrazines and alcohols were the major volatiles in BRT, with 2% DOM having the greatest retention of aroma compounds. An orthogonal partial least squares discriminant analysis (OPLS-DA) and VIP score (VIP > 1 and p < 0.05) analysis were used to screen 25 flavor substances that contributed to the differences in BRT aroma of different DOMs. These results suggest that 2% milled BRT can improve safety and palatability while maximizing the retention of flavor compounds and nutrients. The findings of this study contribute to an enhanced understanding of the dynamics of changes and preservation of aroma compounds and nutrients present during the processing of BRT.

8.
Food Res Int ; 172: 113173, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37689925

RESUMEN

A ß-carotene rich emulsion with improved physical and chemical stability was obtained in this study, using different types of protein-polysaccharide-polyphenol ternary complexes as novel emulsifiers. The ternary complexes were prepared by covalent or non-covalent binding of soy protein isolate (SPI), ß-glucan (DG) and myricetin (MC), which were evidenced to be stable. It was indicated that the emulsion stabilized by covalent complex of SPI, DG and MC, exhibited higher zeta-potential and smaller particle size than those stabilized by non-covalent complex. Furthermore, the covalent complexes prepared from different addition sequences showed different efficiencies in stabilizing the emulsion, in which SPI-DG-MC and SPI-MC-DG-stabilized emulsions possess better stability, emulsifying activity and storage resistance under adverse environmental treatment, with CI values of 62.7% and 64.3% after 25 days, respectively. According to oxidative stability and rheology analysis of the emulsions, it was found that the SPI-MC-DG complex prepared at the ratio of 4:2:1 was more stable with relatively less lipid oxidation products and a tighter stacking structure, and the final LH value was 39.98 mmol/L and the MDA value was 6.34 mmol/L. These findings implied that the ternary complex has the potential to deliver fat-soluble active ingredient by means of emulsion, but which depends on the mode and sequence of the molecular interactions.


Asunto(s)
beta Caroteno , beta-Glucanos , Emulsiones , Proteínas de Soja , Cetonas
9.
Environ Sci Pollut Res Int ; 30(36): 86232-86243, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37402046

RESUMEN

The bioresource utilization of herbal biomass residues (HBRs) has been receiving more attention. Herein, three different HBRs from Isatidis Radix (IR) and Sophorae Flavescentis Radix (SFR) and Ginseng Radix (GR) were subjected to batch and fed-batch enzymatic hydrolysis to produce high-concentration glucose. Compositional analysis showed the three HBRs had substantial starch content (26.36-63.29%) and relatively low cellulose contents (7.85-21.02%). Due to their high starch content, the combined action of cellulolytic and amylolytic enzymes resulted in greater release of glucose from the raw HBRs compared to using the individual enzyme alone. Batch enzymatic hydrolysis of 10% (w/v) raw HBRs with low loadings of cellulase (≤ 10 FPU/g substrate) and amylolytic enzymes (≤ 5.0 mg/g substrate) led to a high glucan conversion of ≥ 70%. The addition of PEG 6000 and Tween 20 did not contribute to glucose production. Furthermore, to achieve higher glucose concentrations, fed-batch enzymatic hydrolysis was conducted using a total solid loading of 30% (w/v). After 48-h of hydrolysis, glucose concentrations of 125 g/L and 92 g/L were obtained for IR and SFR residues, respectively. GR residue yielded an 83 g/L glucose concentration after 96 h of digestion. The high glucose concentrations produced from these raw HBRs indicate their potential as ideal substrate for a profitable biorefinery. Notably, the obvious advantage of using these HBRs is the elimination of the pretreatment step, which is typically required for agricultural and woody biomass in similar studies.


Asunto(s)
Celulasa , Glucosa , Glucosa/química , Almidón , Biomasa , Celulosa , Glucanos , Hidrólisis , Celulasa/química
10.
Bioresour Technol ; 384: 129313, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37302765

RESUMEN

This study aimed to investigate the physiological and biochemical responses of filamentous microalga Tribonema minus to different Na2SeO3 concentrations and its selenium absorption and metabolism to evaluate the potential in treating selenium-containing wastewater. The results showed that low Na2SeO3 concentrations promoted growth by increasing chlorophyll content and antioxidant capacity, whereas high concentrations caused oxidative damage. Although Na2SeO3 exposure reduced lipid accumulation compared with the control, it significantly increased carbohydrate, soluble sugar, and protein contents, with the highest carbohydrate productivity of 117.97 mg/L/d at 0.5 mg/L Na2SeO3. Furthermore, this alga effectively absorbed Na2SeO3 in the growth medium and converted most of it into volatile selenium and a small part into organic selenium (predominantly as selenocysteine), showing strong selenite removal efficacy. This is the first report on the potential of T. minus to produce valuable biomass while removing selenite, providing new insights into the economic feasibility of bioremediation of selenium-containing wastewater.


Asunto(s)
Microalgas , Selenio , Estramenopilos , Selenito de Sodio , Selenio/metabolismo , Selenio/farmacología , Microalgas/metabolismo , Aguas Residuales , Biotransformación , Azúcares , Estramenopilos/metabolismo
11.
Food Chem X ; 18: 100635, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-36968317

RESUMEN

A novel alternative to prepare the inulin-procyanidin complex assisted by pulsed electric field (PEF) treatment was explored in this study. Results showed that the optimal condition of PEF treatment enhanced the adsorption rate of procyanidins to inulin from 78.56 to 103.46 µg/mg. Based on well fitted by Redlich-Peterson model and spectral analysis including UV and FT-IR, the interaction between inulin and procyanidin was evidenced to be dominated by hydrogen bonds. The DSC curve and the SEM spectrum displayed better stability of the PEF-treated inulin-procyanidin complex than the untreated complex. The PEF-treated complex had lower solubility but higher water-holding capacity than inulin, which exhibited stronger shear-thinning property and more stable flow behavior referring to rheological analysis. Furthermore, the gel formed from the PEF-treated complex possessed greater hardness, chewiness and viscosity, with no significant effects noted in terms of springiness, cohesiveness and resilience.

12.
Foods ; 12(4)2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36832840

RESUMEN

It has been demonstrated that polyphenols have the potential to extend the shelf life of fish products. Thus, the effects of phenolic extracts from grape seed (GSE), lotus seedpod (LSPC), and lotus root (LRPE) were investigated in this study, focusing on the physicochemical changes and bacterial community of refrigerated channel catfish fillets during storage at 4 °C, using ascorbic acid (AA) as reference. As a result, GSE, LSPC, LRPE and AA inhibit the reproduction of microbials in catfish fillets during storage. According to the microbial community analysis, the addition of polyphenols significantly reduced the relative abundance of Proteobacterial in the early stage and changed the distribution of the microbial community in the later stage of storage. After 11 days of storage, the increase in total volatile base nitrogen (TVB-N) in fish was significantly reduced by 25.85%, 25.70%, 22.41%, and 39.31% in the GSE, LSPC, LRPE, and AA groups, respectively, compared to the control group (CK). Moreover, the lipid oxidation of samples was suppressed, in which thiobarbituric acid-reactive substances (TBARS) decreased by 28.77% in the GSE group, compared with the CK. The centrifugal loss, LF-NMR, and MRI results proved that GSE significantly delayed the loss of water and the increase in immobilized water flowability in catfish fillets. The polyphenol-treated samples also showed less decrease in shear force and muscle fiber damage in histology, compared to the CK. Therefore, the dietary polyphenols including GSE, LSPC, and LRPE could be developed as natural antioxidants to protect the quality and to extend the shelf life of freshwater fish.

13.
Foods ; 12(23)2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-38231654

RESUMEN

Selenium polysaccharides have attracted significant interest due to their superior function to that of individual polysaccharides. However, limited research has compared the protective effects of different selenium polysaccharides from different selenization methods on diabetes. This work aims to compare the preventive effects of natural selenium-enriched green tea polysaccharides (NSe-TPS), synthetic selenized green tea polysaccharides (PCSe-TPS), and a mixture of sodium selenite and green tea polysaccharides (ordinary tea polysaccharides (Ord-TPS)+Se) on the development of diabetes. While establishing a diabetes model induced by a high-sugar, high-fat diet combined with streptozotocin, different selenium polysaccharides were administered daily by gavage for nine weeks. Our findings indicate that PCSe-TPS exhibited superior preventive effects on developing type 2 diabetes compared to NSe-TPS and Ord-TPS+Se. PCSe-TPS effectively regulated glucose metabolism and insulin resistance by activating the PI3K/Akt pathway, thereby preventing elevated blood glucose levels. Additionally, PCSe-TPS mitigated oxidative damage and inflammatory responses in liver tissues. Notably, PCSe-TPS intervention reversed the decline in bacterial species richness and the abundance of unclassified_Oscillospiraceae during the development of diabetes in mice. These results provide valuable insights into the protective effects of PCSe-TPS against diabetes development, highlighting its advantages over NSe-TPS and Ord-TPS+Se.

14.
Crit Rev Food Sci Nutr ; : 1-15, 2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36576196

RESUMEN

Consumers have an increasing demand for fruit and vegetables with high nutritional value worldwide. However, most fruit and vegetables are vulnerable to quality loss and spoilage during processing, transportation, and storage. Among the recently introduced emerging technologies, supercritical carbon dioxide (SCCO2) has been extensively utilized to treat and maintain fruit and vegetables mainly due to its nontoxicity, safety, and environmentally friendly. SCCO2 technology generates low processing costs and mild processing conditions (temperature and pressure) that allow for the application of CO2 at a supercritical state. This review aimed to summarize the current knowledge on the influence of SCCO2 technology on the quality attributes of fruit and vegetable products, such as physicochemical properties (pH, color, cloud, particle size distribution, texture), sensory quality, and nutritional composition (ascorbic acid, phenolic compounds, anthocyanins, carotenoids, and betalains). In addition, the effects and mechanisms of the SCCO2 technique on endogenous enzyme inactivation (polyphenol oxidase, peroxidase, and pectin methylesterase) were also elucidated. Finally, the prospects of the SCCO2 technique for industrial application was discussed from the economic and regulatory aspect.

15.
Bioresour Technol ; 364: 128102, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36243259

RESUMEN

Available literature on Chinese medicinal herbal residues (CMHRs) bioconversion highlights pretreatment prior to saccharification with cellulase without considering the presence of starch constituent. Herein, four commonly found CMHRs were tested for starch content, and it was found they all contained starch with content ranging from 4.74% to 16.78%. Hydrolysis of raw CMHRs with combined cellulase and amylolytic enzymes yielded increments of 16.85% to 26.51% in 48-h glucan conversion compared to cellulase alone. Further study showed 48-h glucan conversion of raw CMHRs outperformed that pretreated by water-ethanol successive extraction, ultrasound and acid, but underperformed alkali-pretreated CMHRs. Although increasing 48-h glucan conversion in the range of 7.40% to 24.10% compared to raw CMHRs, alkaline pretreatment demonstrated low glucose recovery and incurred additional cost, making it unfavorable. Saccharification of the four raw CMHRs with combined enzymes seems like a preferred option considering the elimination of high-cost pretreatment step.

16.
Food Chem X ; 15: 100426, 2022 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-36211777

RESUMEN

The complexation of soybean protein isolate (SPI) with ß-glucan (DG) and myricetin (MC) was focused in this study. UV-Vis, circular dichroism and 3D fluorescence analysis jointly proved that interaction with DG and MC altered the structures of SPI, whose ß-sheet decreased to 29 % and random coil increased to 35 %, respectively. Moreover, the microenvironment of tryptophan and tyrosine from protein were changed. The ternary complex performed a different molecular weight distribution, showing a larger molecular weight of 1.17×106 g/mol compared with SPI verified by gel permeation chromatography (GPC). And it was further evidenced by Quartz Crystal Microbalance with Dissipation (QCM-D) and molecular docking that glycinin (11S) possessed a better affinity toward DG and MC compared with ß-conglycinin (7S), which indicated stronger binding ability through hydrogen bonds. The successful preparation of SPI-DG-MC complex will advance the application of soybean resource as a functional food ingredient.

17.
Antioxidants (Basel) ; 11(10)2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-36290627

RESUMEN

Lipophilization is a promising way to improve the bioavailability of flavonoids. However, the traditional enzymatic esterification methods are time-consuming, and present low yields and purity. Herein, a novel membrane-based lipophilization technology-bioinspired lipase immobilized membranes (BLIMs), including CAL-B@PES, CAL-B@PDA/PES and GA/CAL-B@PDA/PES- were fabricated to improve the antioxidant flavanone glycoside hesperidin lipophilization. Via reverse filtration, PDA coating and GA crosslinking, Candida antarctica lipase B (CAL-B) was stably immobilized on membrane to fabricate BLIMs. Among the three BLIMs, GA/CAL-B@PDA/PES had the greatest enzyme activity and enzyme loading, the strongest tolerance of changes in external environmental conditions (temperatures, pH, heating time, storage time and numbers of cycles) and the highest hesperidin esterification efficiency. Moreover, the optimal operating condition for GA/CAL-B@PDA/PES fabrication was the CAL-B concentration of 0.36 mg/mL, operation pressure of 2 bar, GA concentration of 5% and crosslinking time of 1 h. Afterwards, the hesperidin esterification process did not affect the micromorphology of BLIM, but clearly improved the BLIM permeability and esterified product efficiency. The present study reveals the fabrication mechanism of BLIMs and offers insights into the optimizing strategy that governs the membrane-based lipophilization technology process.

18.
Foods ; 11(17)2022 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-36076731

RESUMEN

Pulsed electric fields (PEF) and ultrasonic-assisted extraction (UE) were applied to improve the extraction performance of selenium-enriched tea polysaccharides (Se-TPSs) in mild conditions. Two combined extraction processes were investigated: (1) PEF strength at 10 kV/cm followed by conventional extraction (CE) at 50 °C for 60 min and (2) PEF+UE (PEF strength at 10 kV/cm followed by UE at 400 W for 60 min). The optimal extraction yields, and energy consumption rates were obtained at 36.86% and 41.53% and 78.78 kJ/mg and 133.91 kJ/mg, respectively. The Se-TPSs were analyzed and characterized by GPC, UV, and FT-IR, which evidenced the structural stability of the Se-TPSs during the extraction processes. It was found that PEF and UE could reduce the particle size diameter of the Se-TPS extract, as well as the proportion of uronic acid. Moreover, PEF could increase the selenium content in the Se-TPS extract by 160.14% due to a lower extraction temperature compared to conventional extraction. The antioxidant activities of the Se-TPSs in vitro were investigated using OH, O2-, and ABTS+ scavenging experiments, as well as a total antioxidant ability evaluation. It was found that the antioxidant activity of the Se-TPSs obtained using PEF2+CE2 was relatively high due to the potential synergistic effect between the selenium and polysaccharides. Based on these results, we speculate that PEF2+CE2 was the best extraction process for the Se-TPSs. Furthermore, this research indicates the application of selenium-enriched tea for functional food production.

19.
Front Nutr ; 9: 996932, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36105580

RESUMEN

Background: Cardamine violifolia (Cv) is a kind of selenium-enriched plant which contains high levels of organic selenium (Se) such as selenocysteine and methylselenocysteine. This study was conducted to investigate the effects of this new source of Se on the growth performance, anti-oxidative capacity and meat quality in broilers compared with other frequently-used Se sources. Methods: A total of 240 broilers were allotted into 4 treatments: (1) Control group (Se free diets, CON); (2) Sodium selenite group (0.3 mg/kg Se sourced from Na2SeO3 diets, SeNa); (3) Selenium yeast group (0.3 mg/kg Se sourced from Se-Yeast diets, SeY); (4) Plant Se group (0.3 mg/kg Se sourced from Cv diets, SeCv). The whole study lasted 42 days and was divided into 2 stages (1-21 d as earlier stage and 22-42 d as later stage). Results: The results showed that the broilers fed SeCv diets had improved average daily gain and the ratio of feed to gain compared to the broilers fed SeNa and SeY diets during the earlier stage. However, there was no significant difference in growth performance of broilers fed these 3 sources of Se diets during the whole period. The broilers fed SeCv diets had improved intestinal mucosal morphology on d 21 and 42. Enhanced liver total anti-oxidative capacity was observed from the broilers fed SeCv diets compared with the other 2 Se sources diets on d 21. Furthermore, lower liver malondialdehyde contents were determined from the broilers fed SeCv and SeY diets compared with SeNa diets. At last, the broilers fed SeCv had increased redness in thigh muscle and decreased cooking loss in both breast and thigh muscle compared with the boilers fed SeNa diets. However, the broilers had similar meat quality between SeCv group and SeY group. Conclusion: In conclusion, these results demonstrated that SeCv was a well-organic Se source for broilers.

20.
RSC Adv ; 12(34): 22082-22090, 2022 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-36043101

RESUMEN

Enzymatic synthesis of selenium (Se)-enriched peptides is vital for their application in supplementing organic Se. However, the poor stability and reusability of the free enzyme impedes the reaction. In this work, a highly stable immobilized Alcalase was synthesized by immobilizing Alcalase on tannic acid (TA) and polyethyleneimine (PEI) modified Fe3O4 nanoparticles (NPs). The optimal immobilization conditions for immobilized Alcalase were found at a TA/PEI (v/v) ratio of 1 : 1, pH of 10, and temperature of 40 °C, and the results from scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier Transform Infrared (FTIR) and X-ray photoelectron spectroscopy (XPS) characterization confirmed the successful immobilization of Alcalase. The results of an enzyme property test showed that immobilized Alcalase had higher thermal and pH stability than free Alcalase, and retained 61.0% of the initial enzyme activity after 10 repetitions. Furthermore, the organic Se content of Se-enriched peptide prepared through enzymatic hydrolysis of Cardamine violifolia (CV) protein with immobilized Alcalase was 2914 mg kg-1, and the molecular weight was mainly concentrated in 924.4 Da with complete amino acid components. Therefore, this study proposes the feasibility of immobilized enzymes for the production of Se-enriched peptides.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...