Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 2896, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38575592

RESUMEN

The synthesis of dynamic chiral lanthanide complex emitters has always been difficult. Herein, we report three pairs of dynamic chiral EuIII complex emitters (R/S-Eu-R-1, R = Et/Me; R/S-Eu-Et-2) with aggregation-induced emission. In the molecular state, these EuIII complexes have almost no obvious emission, while in the aggregate state, they greatly enhance the EuIII emission through restriction of intramolecular rotation and restriction of intramolecular vibration. The asymmetry factor and the circularly polarized luminescence brightness are as high as 0.64 (5D0 → 7F1) and 2429 M-1cm-1 of R-Eu-Et-1, achieving a rare double improvement. R-Eu-Et-1/2 exhibit excellent sensing properties for low concentrations of CuII ions, and their detection limits are as low as 2.55 and 4.44 nM, respectively. Dynamic EuIII complexes are constructed by using chiral ligands with rotor structures or vibration units, an approach that opens a door for the construction of dynamic chiral luminescent materials.

2.
Dalton Trans ; 53(12): 5665-5675, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38445301

RESUMEN

The complex hydrolysis process and strong uncertainty of self-assembly rules have led to the precise synthesis of lanthanide clusters still being in the "blind-box" stage and simplifying the self-assembly process and developing reliable regulation strategies have attracted widespread attention. Herein, different anions are used to induce the construction of a series of dysprosium clusters with different shapes and connections. When the selected anion is NO3-, it blocks the coordination of metal sites around the cluster through the terminal group coordination mode, thereby controlling the growth of the cluster. When NO3- was changed to OAc-, OAc- adopted a bridging mode to induce modular units to build dysprosium clusters through an annular growth mechanism. Specifically, we selected 2-amino-6-methoxybenzoic acid, 2-hydroxybenzaldehyde, and Dy(NO3)3·6H2O to react under solvothermal conditions to obtain a pentanuclear dysprosium cluster (1). The five Dy(III) ions in 1 are distributed in upper and lower planes and are formed by the tight connection of nitrogen and oxygen atoms, and µ3-OH- bridges on the ligand. Next, octa-nuclear dysprosium cluster (2) were obtained by only regulating ligand substituents. The eight Dy(III) ions in 2 are tightly connected through ligand oxygen atoms, µ2-OH-, and µ3-OH- bridges, forming an elliptical {Dy/O} cluster core. Furthermore, only by changing NO3- to OAc-, a wheel-shaped tetradeca-nuclear dysprosium cluster (3) was obtained. Cluster 3 is composed of OAc- bridged multiple template Dy3L3 units and pulling of these template units connected by an annular growth mechanism forms a wheel-shaped cluster. The angle of the coordination site on NO3- is ∠ONO = 115°, which leads to the further extension of the metal sites on the periphery of clusters 1 and 2 through the terminal group coordination mode, thereby regulating the structural connection of the clusters. However, the angle of the coordination site on OAc- is ∠OCO = 128°, and a slightly increased angle leads to the formation of a ring-shaped cluster 3 by connecting the template units through bridging. This is a rare example of the controllable construction of lanthanide clusters with different shapes induced by the regulation of different anions, which provides a new method for the precise construction of lanthanide clusters with special shapes.

3.
Dalton Trans ; 53(8): 3675-3684, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38293800

RESUMEN

Coordination-driven self-assembly processes often produce remarkable structures. In particular, self-assembly processes mediated by chiral template units have provided research ideas for analyzing the formation of chiral macromolecules in living organisms. In this study, by regulating the proportion of reaction raw materials in the "one-pot" synthesis of lanthanide complexes, we constructed chiral template units with different coordination orientations. As a result, lanthanide chiral chains connected to different structures were obtained through the self-assembly process of coordination recognition. In particular, driven by coordination, chiral template units with codirectional coordination points (called cis configuration) coordinate solely with cis template units during the self-assembly process to obtain a one-dimensional (1D) chain R-1/S-1 with an "S"-shaped distribution. Moreover, chiral template units with reversed coordination sites (called trans configuration) and twisted chiral template units are connected solely to templates with the same configuration to form a 1D chain R-2/S-2 with an axial helix. A circular dichroism spectrum shows that R-1/S-1 and R-2/S-2 are two pairs of enantiomers. The controllable construction of these two differential 1D chains is of great significance for studying coordination recognition at the molecular level. To the best of our knowledge, this is the first study to construct a 1D lanthanide chain through the self-assembly process of coordination recognition. The assembly process of nucleotides to form a hierarchical structure is simulated. This work provides a vivid example of the controllable synthesis of lanthanide complexes with precise structures and offers a new perspective on the formation process of chiral macromolecules that simulates natural processes.

4.
Inorg Chem ; 62(48): 19552-19564, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-37976457

RESUMEN

Pinacol lanthanide complexes PyraLn (Ln = Dy and Tb) with the restriction of intramolecular vibration were obtained for the first time via an in situ solvothermal coordination-catalyzed tandem reaction using cheap and simple starting materials, thereby avoiding complex, time-consuming, and expensive conventional organic synthesis strategies. A high-resolution electrospray ionization mass spectrometry (HRESI-MS) analysis confirmed the stability of PyraLn in an organic solution. The formation process of PyraLn was monitored in detail using time-dependent HRESI-MS, which allowed for proposing a mechanism for the formation of pinacol complexes via in situ tandem reactions under one-pot coordination-catalyzed conditions. The PyraLn complexes constructed using a pinacol ligand with a butterfly configuration exhibited distinct aggregation-induced emission (AIE) behavior, with the αAIE value as high as 60.42 according to the AIE titration curve. In addition, the PyraLn complexes in the aggregated state exhibit a rapid photoresponse to various 3d metal ions with low detection limits. These findings provide fast, facile, and high-yield access to dynamic, smart lanthanide complex emissions with bright emission and facilitate the rational construction of molecular machines for artificial intelligence.

5.
Mater Horiz ; 10(11): 4868-4881, 2023 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-37772470

RESUMEN

Porphyrin-based photosensitizers have been widely utilized in photodynamic therapy (PDT), but they suffer from deteriorating fluorescence and reactive oxygen species (ROS) due to their close π-π stacking. Herein, a biocompatible pure organic porphyrin nanocage (Py-Cage) with enhanced both type I and type II ROS generation is reported for PDT. The porphyrin skeleton within the Py-Cage is spatially separated by four biphenyls to avoid the close π-π stacking within the nanocage. The Py-Cage showed a large cavity and high porosity with a Brunauer-Emmett-Teller surface area of over 300 m2 g-1, facilitating a close contact between the Py-Cage and oxygen, as well as the fast release of ROS to the surrounding microenvironment. The Py-Cage shows superb ROS generation performance over its precursors and commercial ones such as Chlorin E6 and Rose Bengal. Intriguingly, the cationic π-conjugated Py-Cage also shows promising type I ROS (superoxide and hydroxyl radicals) generation that is more promising for hypoxic tumor treatment. Both in vitro cell and in vivo animal experiments further confirm the excellent antitumor activity of the Py-Cage. As compared to conventional metal coordination approaches to improve PDT efficacy of porphyrin derivatives, the pure organic porous Py-Cage demonstrates excellent biocompatibility, which is further verified in both mice and rats. This work of an organic porous nanocage shall provide a new paradigm for the design of novel, biocompatible and effective photosensitizers for PDT.


Asunto(s)
Fotoquimioterapia , Porfirinas , Ratones , Ratas , Animales , Fármacos Fotosensibilizantes/farmacología , Porosidad , Especies Reactivas de Oxígeno , Porfirinas/farmacología
6.
Adv Sci (Weinh) ; 10(26): e2302395, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37424049

RESUMEN

X-ray induced photodynamic therapy (X-PDT) circumvents the poor penetration depth of conventional PDT with minimal radio-resistance generation. However, conventional X-PDT typically requires inorganic scintillators as energy transducers to excite neighboring photosensitizers (PSs) to generate reactive oxygen species (ROS). Herein, a pure organic aggregation-induced emission (AIE) nanoscintillator (TBDCR NPs) that can massively generate both type I and type II ROS under direct X-ray irradiation is reported for hypoxia-tolerant X-PDT. Heteroatoms are introduced to enhance X-ray harvesting and ROS generation ability, and AIE-active TBDCR exhibits aggregation-enhanced ROS especially less oxygen-dependent hydroxyl radical (HO•- , type I) generation ability. TBDCR NPs with a distinctive PEG crystalline shell to provide a rigid intraparticle microenvironment show further enhanced ROS generation. Intriguingly, TBDCR NPs show bright near-infrared fluorescence and massive singlet oxygen and HO•- generation under direct X-ray irradiation, which demonstrate excellent antitumor X-PDT performance both in vitro and in vivo. To the best of knowledge, this is the first pure organic PS capable of generating both 1 O2 and radicals (HO•- ) in response to direct X-ray irradiation, which shall provide new insights for designing organic scintillators with excellent X-ray harvesting and predominant free radical generation for efficient X-PDT.


Asunto(s)
Fotoquimioterapia , Especies Reactivas de Oxígeno , Rayos X , Fármacos Fotosensibilizantes/química
7.
Inorg Chem ; 62(14): 5863-5871, 2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-36976914

RESUMEN

It is difficult to subject simple reaction starting materials to a "one-pot" in situ tandem reaction without post-treatment under mild reaction conditions to obtain multimers with complex structural linkages. In organic synthesis, acetal reactions are often used to protect derivatives containing carbonyl functional groups. Therefore, acetal products tend to have very low stability, and performing multi-step condensation to obtain complex multimeric products is difficult. Herein, we achieved the first efficient multiple condensation of o-vanillin derivatives using Dy(OAc)3·6H2O undergoing a "one-pot" in situ tandem reaction under mild solvothermal conditions to obtain a series of dimers (I and II, clusters 1 and 2) and trimers (I and II, clusters 3 and 4). When methanol or ethanol is used as the solvent, the alcoholic solvent participates in acetal and dehydration reactions to obtain dimers (I and II). Surprisingly, when using acetonitrile as the reaction solvent, the o-vanillin derivatives undergo acetal and dehydration reactions to obtain trimers (I and II). In addition, clusters 1-4 all showed distinct single-molecule magnetic behaviors under zero-field conditions. To the best of our knowledge, this is the first time that multiple acetal reactions catalyzed by coordination-directed catalysis under "one-pot" conditions have been realized, opening a new horizon for the development of fast, facile, green, and efficient synthetic methods for complex compounds.

8.
Inorg Chem ; 61(50): 20513-20523, 2022 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-36475643

RESUMEN

By changing the coordination anions (OAc- and Cl-), reaction temperature, solvent, and ligand substituents, four Dy(III)-based complexes were obtained by directed synthesis, which are [Dy4(L1)2(L2)2(OAc)4]·4C2H5OH·3H2O (1, L1 = 1,3,4-thiadiazole-2,5-diamine, H4L2 = 6,6'-(((1,3,4-thiadiazole-2,5-diyl)bis(azanediyl))bis(((3-ethoxy-2-hydroxybenzyl)oxy)methylene))bis(2-ethoxyphen), [Dy4(L3)4(OAc)4]·C2H5OH·H2O (2, H3L3 = 2-(((5-amino-1,3,4-thiadiazol-2-yl)amino)((3-ethoxy-2-hydroxybenzyl)oxy)methyl)-6-ethoxyphenol)), [Dy6(L4)4(L5)2(µ3-OH)4(CH3O)4Cl4]Cl2 (3, H2L4 = 2-hydroxy-3-methoxybenzaldehyde, H2L5 = 2-(((5-amino-1,3,4-thiadiazol-2-yl)amino)(hydroxy)methyl)-6-methoxyphenol), and [Dy6(L6)4(L7)2(µ3-OH)4(CH3O)4Cl4]Cl2·2H3O (4, H2L6 = 2-hydroxy-3-ethoxybenzaldehyde, H2L7 = 2-(((5-amino-1,3,4-thiadiazol-2-yl)amino)(hydroxy)methyl)-6-ethoxyphenol). A series of acetal products (H4L2, H3L3, H2L5, and H2L7) were obtained through dehydration in situ tandem reactions. Magnetic studies show that complexes 1-4 exhibited different single-molecule magnet behavior under zero-field conditions. The best fitting results showed that under zero DC field, the effective energy barriers (Ueff) and magnetic relaxation times (τ0) of complexes 1-4 are Ueff = 117.0 (2.1) K and τ0 = 6.07 × 10-7 s; Ueff = 83.91 (1.5) K and τ0 = 4.28 × 10-7 s; Ueff = 1.28 (0.2) K and τ0 = 0.73 s, and Ueff = 104.43 (13.3) K and τ0 = 8.25 × 10-8 s, respectively.

9.
Inorg Chem ; 61(49): 20169-20176, 2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36445983

RESUMEN

Widespread concern has been raised over the synthesis of highly nucleated lanthanide clusters with special shapes and/or specific linkages. Construction of lanthanide clusters with specific shapes and/or linkages can be achieved by carefully regulating the hydrolysis of lanthanide metal ions and the resulting hydrolysis products. However, studies on the manipulation of lanthanide-ion hydrolysis to obtain giant lanthanide-oxo clusters have been few. In this study, we obtained a tetraicosa lanthanide cluster (3) by manipulating the hydrolysis of Dy(III) ions using an anion (OAc-). As far as we know, cluster 3 has the highest nucleation among all lanthanide-oxo clusters reported. In 3, two triangular Dy3O4 are oriented in opposite directions to form the central connecting axis Dy6(OH)8, which is in turn connected to six Dy3O4 that are oriented in different directions. Meanwhile, a sample of a chiral trinuclear dysprosium cluster (1) was obtained in a mixed CH3OH and CH3CN solvent and by replacing the anion in the reaction to Cl- ions. In this cluster, 1,3,4-thiadiazole-2,5-diamine (L2) is free on one side through π···π interactions and is parallel to the o-vanillin (L1)- ligand, thus resulting in a triangular arrangement. The arrangement of L2 affects the end group coordination in the cluster 1 structure through hydrogen bonding and induces the cluster to exhibit chirality. When the reaction solvent was changed to CH3OH, a sample of cluster 2, composed of two independent triangular Dy3 that have different end group arrangements, was obtained. Magnetic analysis showed that clusters 1 and 3 both exhibit distinctive single-molecule magnetic properties under zero-magnetic-field conditions. This study thus provides a method for the creation of chiral high-nucleation clusters from achiral ligands and potentially paves the way for the synthesis of high-nucleation lanthanide clusters with unique forms.


Asunto(s)
Elementos de la Serie de los Lantanoides , Elementos de la Serie de los Lantanoides/química , Aniones , Ligandos , Hidrólisis , Iones
10.
iScience ; 25(11): 105285, 2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36304113

RESUMEN

The metallic central magnetic axes in high-nucleation clusters with complex structural connections tend to be disorganized and cancel each other out. Therefore, high-nucleation clusters cannot easily exhibit single-molecule magnets (SMMs) behaviors. Herein, we select a triple-core building block (Dy3K2, 1) and use linked diamagnetic alkali metal to form an open, spherical, high-nucleation cluster Dy12Na6 (3) with SMM behavior. Furthermore, by changing the reaction conditions, Dy6K2 (2) formed by linking two Dy3 by K(I) is obtained. High-resolution electrospray mass spectrometry of clusters 1-3 effectively captures the building block Dy3, and clusters 1 and 3 and Dy3 have high stability even with the increase in ion source energy. To the best of our knowledge, this is the first time that an SMM based on a high-nucleation cluster has been obtained by connecting magnetic primitives via diamagnetic metal ions. Dy12K6 is currently the highest nuclear ns-4f heterometallic SMM.

11.
Dalton Trans ; 51(44): 17040-17049, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36305364

RESUMEN

Although progress has been made in the design and synthesis of chiral lanthanide clusters with pleasing structural connections and special shapes, assembly rules that guide their directional construction are still lacking. We reacted R/S-mandelic acid hydrazide, 2,3-dihydroxybenzaldehyde and DyCl3·6H2O under solvothermal conditions to obtain two octanuclear chirality clusters R-1 and S-1, which are the enantiomers of each other. R/S-mandelic acid hydrazide and 2,3-dihydroxybenzaldehyde underwent an in situ reaction under "one-pot" conditions to generate a monohydrazone-type organic ligand R/S-mandelic acid hydrazide-2,3-dihydroxybenzaldehyde hydrazone (R/S-H2L). Four R/S-H2L ligands captured eight metal-centered Dy(III) ions and presented an annular arrangement, which assembled to form a pinwheel-shaped chiral cluster R/S-1. The benzene rings at the four vertices of R/S-1 can rotate freely as rotors. This is the first discovery of an annular growth mechanism during the self-assembly of lanthanide clusters. By changing the metal salt to Dy(NO3)3·6H2O, two twist-shaped hexanuclear clusters R-2 and S-2, which are the enantiomers of each other were obtained. Four R/S-H2L and two R/S-H3L ligands captured six metal-centered Dy(III) ions, respectively, and were assembled through a linear growth mechanism to form the twist-shaped chiral clusters R/S-2. This is the first time that a linear growth mechanism has been proposed for the directional construction of lanthanide clusters with specific shapes. Circular dichroism results showed that R/S-1 and R/S-2 were both chiral clusters and enantiomers of each other. Magnetic studies showed that both R/S-1 and R/S-2 exhibit obvious single-molecule magnet (SMM) behaviors under zero-field conditions. This work is the first to propose an annular/linear growth mechanism for the design and synthesis of lanthanide clusters and allows the directional construction of chiral lanthanide clusters with special shapes and structural connections.

12.
Inorg Chem ; 61(26): 10101-10107, 2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-35709380

RESUMEN

Lanthanoid metal ions have large ionic radii, complex coordination modes, and easy distortion of coordination spheres, but the design and synthesis of high-nucleation lanthanoid clusters with high stability in solution (especially aqueous solution) are challenging. Herein, a diacylhydrazone ligand (H2L1) with multidentate chelating coordination sites was used to react with Dy(OAc)3·4H2O under solvothermal conditions to obtain an example of a 34-nucleus crown-shaped dysprosium cluster [Dy34(L)8(µ2-OH)(µ3-OH)21(µ3-O)14(OAc)31(OCH3)2(H2O)15](OAc)3 (1). Structural analysis showed that the bisacylhydrazone ligand H2L1 with polydentate chelate coordination sites could rapidly capture DyIII ions, thereby forming 34-nucleus crown-shaped dysprosium cluster 1 following the out-to-in growth mechanism. Cluster 1 remained stable after immersion in solutions with different pH values (3-14) for 24 h. To the best of the authors' knowledge, high-nucleation lanthanoid clusters with excellent strong acid and base stability and water stability are very rare. Meanwhile, high-resolution electrospray mass spectrometry molecular ion peaks produced by cluster 1 were captured, which proved to be stable also in organic solvents. Magnetic research showed that cluster 1 exhibited frequency-dependent behavior. This work provides a new idea for designing and synthesizing high-nucleation lanthanoid clusters with high stability.

13.
Adv Sci (Weinh) ; 9(16): e2200850, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35486035

RESUMEN

Luminescent metal-organic frameworks (MOFs) are appealing for the design of smart responsive materials, whereas aggregation-induced emission (AIE) fluorophores with twisted molecular rotor structure provide exciting opportunities to construct MOFs with new topology and responsiveness. Herein, it is reported that elongating AIE rotor ligands can render the newly formed AIE MOF (ZnETTB) (ETTB = 4',4''',4''''',4'''''''-(ethene-1,1,2,2-tetrayl)tetrakis(([1,1'-biphenyl]-3,5-dicarboxylic acid))) with more elasticity, more control for intramolecular motion, and specific amide-sensing capability. ZnETTB shows specific host-guest interaction with amide, where N,N-diethylformamide (DEF), as an example, is anchored through CH···O and CH···π bonds with Zn cluster and ETTB8- ligand, respectively. DEF anchoring reduces both the distortion level and the intramolecular motions of ETTB8- ligand to lead a blueshifted and intensified emission for DEF ∈ ZnETTB. Moreover, amide anchoring also affords the DEF ∈ ZnETTB with the excellent thermofluorochromic behavior, and further increases the piezofluorochromic sensitivity at low-pressure ranges on the basis of its elastic framework. This work is one of the rare examples of amide-responsive smart materials, which shall shed new lights on design of smart MOFs with twisted AIE rotors for further sensing and detection applications.

14.
Inorg Chem ; 61(16): 6094-6100, 2022 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-35416660

RESUMEN

A three-dimensional supermolecule structure is easily formed due to the diverse coordination modes of high-oxidation-state lanthanide metal ions. However, the design and construction of zero-dimensional (0 D) dish-shaped high-nuclearity lanthanide clusters are difficult. Herein, for the first time, we synthesized a series of the largest dish-shaped high-nuclearity lanthanide nanoclusters (1-4) by in situ tandem reactions under solvothermal one-pot conditions. The formation of 1 and 2 involved an in situ reaction of aldehydes and amines, while the condensation reactions between aldehydes occurred in 3 and 4. Based on the structural characteristics of the dish-shaped lanthanide clusters, we proposed two possible assembly mechanisms involving Dy1 → Dy7 → Dy13 → Dy19 (planar epitaxial growth mechanism) and Dy1 → Dy12 → Dy18 → Dy19 (planar internal growth mechanism).

15.
ACS Nano ; 16(1): 1346-1357, 2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-34958557

RESUMEN

Water treatment is crucial to improve the water quality and reduce diarrheal and chronological diseases caused by excessive discharge of organic dyes and other waste. The development and expansion of efficient catalysts for the degradation and sterilization of organic dyes has attracted widespread attention. Herein, we report an example of a porphyrin-based two-dimensional layered metal-organic framework (MOF) (2DZnTcpp) and its efficient sono-/photocatalytic degradation of organic dyes and bactericidal activity. The dislocated layers effectively avoid close π-π stacking and provide a porous space for oxygen/water/dye contact. The introduction of Zn ions increases the spin orbital coupling through the heavy atom effect and promotes the intersystem crossing process for singlet oxygen generation. The effective ligand-to-metal charge transfer and the excessive open Zn catalytic sites also facilitate water splitting for hydroxyl radical generation. These features together promote the reactive oxygen species (ROS) generation of 2DZnTcpp under light illumination or ultrasound sonication. It is worth noting that the 2DZnTcpp with a high specific surface area and porosity shows efficient sono-/photocatalytic degradation of organic dye waste. Moreover, 2DZnTcpp could also largely inactivate Escherichia coli under light irradiation (the light power of 1 sun) or ultrasound sonication for 30 min with efficiencies over 99.99999%. This work provides an approach for the design and synthesis of MOF-based sono-/photocatalysts used in the purification and treatment of textile wastewater and is committed to the establishment of a more efficient, fast, and environmentally friendly catalytic system.


Asunto(s)
Estructuras Metalorgánicas , Porfirinas , Descontaminación , Colorantes , Catálisis
16.
Dalton Trans ; 51(1): 197-202, 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34878449

RESUMEN

Specially shaped high-nuclear lanthanide cluster assembly has attracted widespread attention, but the study of their self-assembly mechanism is still stagnant. Herein, we used a polydentate chelating bis-acylhydrazone ligand to construct a rare 16-nuclear dysprosium cluster 1 with a brucite-like structure. The capture agents, pivalic acid and di(pyridin-2-yl)methanone, were added into the reaction system, and the hexanuclear dysprosium cluster 2 and heptanuclear dysprosium cluster 3 were obtained, respectively. Clusters 2 and 3 support the out-to-in growth mechanism as key evidence. To the best of our knowledge, this study is the first to use truncation reaction to decipher the formation mechanism of high-nuclear lanthanide clusters.

17.
Inorg Chem ; 60(21): 16794-16802, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34668696

RESUMEN

The serialized expansion of high-nuclear clusters usually includes the controlled variable method and changes only a single variable. However, changing both variables will greatly increase the complexity of the reaction simultaneously. Therefore, the use of a two-component regulation reaction is rare. Herein, we used a diacylhydrazone ligand (H4L1) with multidentate chelating coordination sites for the reaction with Gd(NO3)3·6H2O under solvothermal conditions to obtain an example of 16-nucleus disc-shaped cluster 1 with a brucite structure. The overall structure of cluster 1 can be regarded as an equilateral triangle, which is formed by three (L1)4- ions that can be regarded as "sides" and wrap the four-layer metal center Gd(III) ions. Notably, upon simultaneous regulation of the substituent of the ligand and the coordination anion, heptanuclear gadolinium cluster 2 was obtained. Cluster 2 can be regarded as a butterfly structure, which was formed by connecting two Gd3L2 molecules that were not in the same plane and through the central Gd(III) ion as an intersection. Moreover, hexanuclear gadolinium cluster 3 was obtained by changing the ligand substituent and adding an auxiliary ligand. Cluster 3 can be regarded as a chair structure, which was composed of two molecules of diacylhydrazone ligand (L2)4- wrapping vacant cubane shared by four vertices. This study was the first to construct a series of high-nuclear gadolinium clusters through two-component regulation manipulation. The study of the magnetocaloric effect showed that the maximum values of -ΔSm for clusters 1-3 were 34.05, 29.04, and 24.32 J kg-1 K-1, respectively, when T = 2 K and ΔH = 7 T.

18.
Inorg Chem ; 60(7): 4904-4914, 2021 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-33729775

RESUMEN

The aggregation and formation of heterometallic nanoclusters usually involves a variety of complex self-assembly processes; thus, the exploration of their assembly mechanisms through process tracking is more challenging than that for homometallic nanoclusters. We explored here the effect of solvent on the formation of heterometallic clusters, which gave two heterometallic nanoclusters, [Dy2Co8(µ3-OCH3)2(L)4(HL)2(OAc)2(NO3)2(CH3CN)2]·CH3CN·H2O (1) and [Dy4Co6(L)4(HL)2(OAc)6(OCH2CH2OH)2(HOCH2CH2OH)(H2O)]·9CH3CN (2), with the H3L ligand formed from the in situ condensation reaction of 3-amino-1,2-propanediol with 2-hydroxy-1-naphthaldehyde in the presence of Co(OAc)2·4H2O and Dy(NO)3·6H2O. It is worth noting that the skeleton of cluster 1 has a high stability under high-resolution electrospray ionization mass spectrometry (HRESI-MS) conditions with a gradually increasing energy of the ion source. Cluster 2 underwent a multistep fragmentation even under a zero ion-source voltage for the measurement of HRESI-MS. Further analysis showed that cluster 2 underwent a possible fragmentation mechanism of Dy4Co6L6 → Dy2Co6L5/DyL → DyCo2L3/DyCo2L → DyL/Co2L2. Most notably, the species emerging in the formation process of cluster 1 were tracked using time-dependent HRESI-MS, from which we proposed its possible formation mechanism of H2L → Co2L2 → Co2DyL2/Co3L2 → Co3DyL2 → Co4DyL2 → Co5Dy2L4 → Co8Dy2L6. As far as we know, it is the first time to track the formation process of Dy-Co heterometallic clusters through HRESI-MS with the proposed assembly mechanism. The magnetic properties of the two titled DyIIIxCoII10-x (x = 2, 4) clusters were studied. Both of them exhibit slow magnetic relaxation, and 1 is a single-molecule magnet at zero direct-current field.

19.
Inorg Chem ; 59(18): 13774-13783, 2020 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-32862645

RESUMEN

The design and synthesis of simple lanthanide complexes with multiple functions have been widely studied and have faced certain challenges. Herein, we successfully synthesized the series of binuclear lanthanide complexes [Ln2(L1)2(NO3)4] (HL1 = 2-amino-1,2-bis(pyridin-2-yl)ethanol; Ln = Dy (Dy2), Tb (Tb2), Ho (Ho2) Er (Er2)) via the in situ self-condensation of Ln(NO3)3·6H2O-catalyzed 2-aminomethylpyridine (16 steps) under solvothermal conditions. Dy2 was mixed with different volatile organic solvents, and photoluminescence tests demonstrated that it showed an excellent selective photoresponse to chloroform (CHCl3). Sensing Tb2 on different organic solvents under the same conditions showed that it exhibited excellent selective photoresponse to methanol (CH3OH). Even under EtOH conditions, Tb2 could selectively respond to small amounts of CH3OH. To the best of our knowledge, achieving a selective photoresponse to various volatile organic compounds by changing the metal center of the complex is difficult. Furthermore, we performed anticounterfeiting tests on Tb2, and the results showed significant differences between the anticounterfeiting marks under white light and ultraviolet light conditions. The alternating current susceptibilities of Dy2 suggested that it was a typical single-molecule magnet (SMM) (Ueff = 93.62 K, τ0 = 1.19 × 10-5 s) under a 0 Oe dc field. Ab initio calculations on Dy2 indicated that the high degrees of axiality of the constituent mononuclear Dy fragments are the main reasons for the existence of SMM behavior.

20.
Inorg Chem ; 59(16): 11640-11650, 2020 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-32799502

RESUMEN

The generation of two types of complexes with different topological connections and completely different structural types merely via the substitution effect is extremely rare, especially for -CH3 and -C2H5 substituents with similar physical and chemical properties. Herein, we used 3-methoxysalicylaldehyde, 1,2-cyclohexanediamine, and Dy(NO3)3·6H2O to react under solvothermal conditions (CH3OH:CH3CN = 1:1) at 80 °C to obtain the butterfly-shaped tetranuclear DyIII cluster [Dy4(L1)4(µ3-O)2(NO3)2] (Dy4, H2L1 = 6,6'-((1E,1'E)-(cyclohexane-1,3-diylbis(azanylylidene))bis(methanylylidene))bis(2-methoxyphenol)). The ligand H2L1 was obtained by the Schiff base in situ reaction of 3-methoxysalicylaldehyde and 1,2-cyclohexanediamine. In the Dy4 structure, (L1)2- has two different coordination modes: µ2-η1:η2:η1:η1 and µ4-η1:η2:η1:η1:η2:η1. The four DyIII ions are in two coordination environments: N2O6 (Dy1) and O9 (Dy2). The magnetic testing of cluster Dy4 without the addition of an external field revealed that it exhibited a clear frequency-dependent behavior. We changed 3-methoxysalicylaldehyde to 3-ethoxysalicylaldehyde and obtained one case of a hydrogen-bonded helix framework, [DyL2(NO3)3]n·2CH3CN (Dy-HHFs, H2L2 = 6,6'-((1E,1'E)-(cyclohexane-1,3-diylbis(azanylylidene))bis(methanylylidene))bis(2-ethoxyphenol)), under the same reaction conditions. The ligand H2L2 was formed by the Schiff base in situ reaction of 3-ethoxysalicylaldehyde and 1,2-cyclohexanediamine. All DyIII ions in the Dy-HHFs structure are in the same coordination environment (O9). The twisted S-shaped (L2)2- ligand is linked by a Dy(III) ion to form a spiral chain. The spiral chain is one of the independent units that is interconnected to form Dy-HHFs through three strong hydrogen-bonding interactions. Magnetic studies show that Dy-HHFs exhibits single-ion-magnet behavior (Ueff = 68.59 K and τ0 = 1.10 × 10-7 s, 0 Oe DC field; Ueff = 131.5 K and τ0 = 1.22 × 10-7 s, 800 Oe DC field). Ab initio calculations were performed to interpret the dynamic magnetic performance of Dy-HHFs, and a satisfactory consistency between theory and experiment exists.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...