Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Anal Chem ; 96(16): 6245-6254, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38593420

RESUMEN

Wastewater treatment plants (WWTPs) serve a pivotal role in transferring microplastics (MPs) from wastewater to sludge streams, thereby exerting a significant influence on their release into the environment and establishing wastewater and biosolids as vectors for MP transport and delivery. Hence, an accurate understanding of the fate and transport of MPs in WWTPs is vital. Enumeration is commonly used to estimate concentrations of MPs in performance evaluations of treatment processes, and risk assessment also typically involves MP enumeration. However, achieving high accuracy in concentration estimates is challenging due to inherent uncertainty in the analytical workflow to collect and process samples and count MPs. Here, sources of random error in MP enumeration in wastewater and other matrices were investigated using a modeling approach that addresses the sources of error associated with each step of the analysis. In particular, losses are reflected in data analysis rather than merely being measured as a validation step for MP extraction methods. A model for addressing uncertainty in the enumeration of microorganisms in water was adapted to include key assumptions relevant to the enumeration of MPs in wastewater. Critically, analytical recovery, the capacity to successfully enumerate particles considering losses and counting error, may be variable among MPs due to differences in size, shape, and type (differential analytical recovery) in addition to random variability between samples (nonconstant analytical recovery). Accordingly, differential analytical recovery among the categories of MPs was added to the existing model. This model was illustratively applied to estimate MP concentrations from simulated data and quantify uncertainty in the resulting estimates. Increasing the number of replicates, counting categories of MPs separately, and accounting for both differential and nonconstant analytical recovery improved the accuracy of MP enumeration. This work contributes to developing guidelines for analytical procedures quantifying MPs in diverse types of samples and provides a framework for enhanced interpretation of enumeration data, thereby facilitating the collection of more accurate and reliable MP data in environmental studies.

2.
Nat Immunol ; 25(1): 117-128, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38012417

RESUMEN

In cancer and infections, self-renewing stem-like CD8+ T cells mediate the response of immunotherapies and replenish terminally exhausted T cells and effector-like T cells. However, the programs governing the lineage choice in chimeric antigen receptor (CAR) T cells are unclear. Here, by simultaneously profiling single-cell chromatin accessibility and transcriptome in the same CAR T cells, we identified heterogeneous chromatin states within CD8+ T cell subsets that foreshadowed transcriptional changes and were primed for regulation by distinct transcription factors. Transcription factors that controlled each CD8+ T cell subset were regulated by high numbers of enhancers and positioned as hubs of gene networks. FOXP1, a hub in the stem-like network, promoted expansion and stemness of CAR T cells and limited excessive effector differentiation. In the effector network, KLF2 enhanced effector CD8+ T cell differentiation and prevented terminal exhaustion. Thus, we identified gene networks and hub transcription factors that controlled the differentiation of stem-like CD8+ CAR T cells into effector or exhausted CD8+ CAR T cells.


Asunto(s)
Linfocitos T CD8-positivos , Factores de Transcripción , Factores de Transcripción/genética , Subgrupos de Linfocitos T , Diferenciación Celular , Cromatina
3.
Environ Pollut ; 337: 122548, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37757933

RESUMEN

The fast and accurate identification of MPs in environmental samples is essential for the understanding of the fate and transport of MPs in ecosystems. The recognition of MPs in environmental samples by spectral classification using conventional library search routines can be challenging due to the presence of additives, surface modification, and adsorbed contaminants. Further, the thickness of MPs also impacts the shape of spectra when FTIR spectra are collected in transmission mode. To overcome these challenges, PlasticNet, a deep learning convolutional neural network architecture, was developed for enhanced MP recognition. Once trained with 8000 + spectra of virgin plastic, PlasticNet successfully classified 11 types of common plastic with accuracy higher than 95%. The errors in identification as indicated by a confusion matrix were found to be caused by edge effects, molecular similarity of plastics, and the contamination of standards. When PlasticNet was trained with spectra of virgin plastic it showed good performance (92%+) in recognizing spectra that had increased complexity due to the presence of additives and weathering. The re-training of PlasticNet with more complex spectra further enhanced the model's capability to recognize complex spectra. PlasticNet was also able to successfully identify MPs despite variations in spectra caused by variations in MP thickness. When compared with the performance of the library search in identifying MPs in the same complex dataset collected from an environmental sample, PlasticNet achieved comparable performance in identifying PP MPs, but a 17.3% improvement. PlasticNet has the potential to become a standard approach for rapid and accurate automatic recognition of MPs in environmental samples analyzed by FPA FT-IR imaging.


Asunto(s)
Aprendizaje Profundo , Contaminantes Químicos del Agua , Microplásticos , Plásticos , Espectroscopía Infrarroja por Transformada de Fourier , Monitoreo del Ambiente/métodos , Ecosistema , Contaminantes Químicos del Agua/análisis
4.
iScience ; 26(8): 107451, 2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37575189

RESUMEN

Acute myeloid leukemia (AML) is the type of hematologic neoplasm most common in adults. Glucocorticoid-induced gene TSC22D3 regulates cell proliferation through its function as a transcription factor. However, there is no consensus on the prognostic and immunoregulatory significance of TSC22D3 in AML. In the present study, we evaluated the correlation between TSC22D3 expression, immunoinfiltration, and prognostic significance in AML. Knockdown of TSC22D3 significantly attenuated the proliferation of Hel cells and increased sensitivity to cytarabine (Ara-c) drugs. Furthermore, TSC22D3 reduced the release of interleukin-1ß (IL-1ß) by inhibiting the NF-κB/NLRP3 signaling pathway, thereby inhibiting macrophage polarization to M1 subtype, and attenuating the pro-inflammatory tumor microenvironment. In conclusion, this study identified TSC22D3 as an immune-related prognostic biomarker for AML patients and suggested that therapeutic targeting of TSC22D3 may be a potential treatment option for AML through tumor immune escape.

5.
Front Genet ; 13: 883234, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35783255

RESUMEN

Coronavirus disease 2019 (COVID-19), which is known to be caused by the virus severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), is characterized by pneumonia, cytokine storms, and lymphopenia. Patients with malignant tumors may be particularly vulnerable to SARS-CoV-2 infection and possibly more susceptible to severe complications due to immunosuppression. Recent studies have found that CD209 (DC-SIGN) might be a potential binding receptor for SARS-CoV-2 in addition to the well-known receptor ACE2. However, pan-cancer studies of CD209 remain unclear. In this study, we first comprehensively investigated the expression profiles of CD209 in malignancies in both pan-carcinomas and healthy tissues based on bioinformatic techniques. The CD209 expression declined dramatically in various cancer types infected by SARS-CoV-2. Remarkably, CD209 was linked with diverse immune checkpoint genes and infiltrating immune cells. These findings indicate that the elevation of CD209 among specific cancer patients may delineate a mechanism accounting for a higher vulnerability to infection by SARS-CoV-2, as well as giving rise to cytokine storms. Taken together, CD209 plays critical roles in both immunology and metabolism in various cancer types. Pharmacological inhibition of CD209 antigen (D-mannose), together with other anti-SARS-CoV-2 strategies, might provide beneficial therapeutic effects in specific cancer patients.

6.
iScience ; 24(11): 103387, 2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34841225

RESUMEN

CD8 T cells are essential for adaptive immunity against viral infections. Protease activated receptor 1 (PAR1) is expressed by CD8 T cells; however, its role in T cell effector function is not well defined. Here we show that in human CD8 T cells, PAR1 stimulation accelerates calcium mobilization. Furthermore, PAR1 is involved in cytotoxic T cell function by facilitating granule trafficking via actin polymerization and repositioning of the microtubule organizing center (MTOC) toward the immunological synapse. In vivo, PAR1-/- mice have reduced cytokine-producing T cells in response to a lymphocytic choriomeningitis virus (LCMV) infection and fail to efficiently control the virus. Specific deletion of PAR1 in LCMV GP33-specific CD8 T cells results in reduced expansion and diminished effector function. These data demonstrate that PAR1 plays a role in T cell activation and function, and this pathway could represent a new therapeutic strategy to modulate CD8 T cell effector function.

7.
Front Immunol ; 12: 663412, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34079548

RESUMEN

Endothelial inflammation and damage are the main drivers of cardiovascular risk/disease. Endothelial repair is mediated in part by recruitment of bone marrow endothelial progenitor/endothelial colony forming cells (EPC/ECFC). People with HIV (PWH) have increased cardiovascular risk and the impact of infection in endothelial repair is not well defined. The low frequencies and challenges to in vitro isolation and differentiation of EPC/ECFC from PBMCs had made it difficult to study their role in this context. We hypothesized that HIV driven inflammation induces phenotypic changes that reflects the impact of infection. To test this hypothesis, we evaluated expression of markers of trafficking, endothelial differentiation, and angiogenesis, and study their association with biomarkers of inflammation in a cohort of PWH. In addition, we investigated the relationship of circulating endothelial progenitors and angiogenic T cells, a T cell subset with angiogenic function. Using a flow cytometry approach, we identified two subsets of circulating progenitors LIN4-CD45-CD34+ and LIN4-CD45dimCD34+ in PWH. We found that the phenotype but not frequencies were associated with biomarkers of inflammation. In addition, the percentage of LIN4-CD45dimCD34+ was associated with serum levels of lipids. This data may provide a new tool to better address the impact of HIV infection in endothelial inflammation and repair.


Asunto(s)
Células Progenitoras Endoteliales/metabolismo , Infecciones por VIH/complicaciones , Infecciones por VIH/inmunología , Vasculitis/etiología , Vasculitis/metabolismo , Anciano , Biomarcadores , Relación CD4-CD8 , Enfermedad Crónica , Células Progenitoras Endoteliales/patología , Femenino , Infecciones por VIH/metabolismo , Infecciones por VIH/virología , Humanos , Inmunofenotipificación , Mediadores de Inflamación , Metabolismo de los Lípidos , Lípidos/sangre , Activación de Linfocitos/inmunología , Recuento de Linfocitos , Masculino , Persona de Mediana Edad , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Vasculitis/patología
9.
Nat Immunol ; 22(3): 370-380, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33574619

RESUMEN

During chronic infection and cancer, a self-renewing CD8+ T cell subset maintains long-term immunity and is critical to the effectiveness of immunotherapy. These stem-like CD8+ T cells diverge from other CD8+ subsets early after chronic viral infection. However, pathways guarding stem-like CD8+ T cells against terminal exhaustion remain unclear. Here, we show that the gene encoding transcriptional repressor BACH2 is transcriptionally and epigenetically active in stem-like CD8+ T cells but not terminally exhausted cells early after infection. BACH2 overexpression enforced stem-like cell fate, whereas BACH2 deficiency impaired stem-like CD8+ T cell differentiation. Single-cell transcriptomic and epigenomic approaches revealed that BACH2 established the transcriptional and epigenetic programs of stem-like CD8+ T cells. In addition, BACH2 suppressed the molecular program driving terminal exhaustion through transcriptional repression and epigenetic silencing. Thus, our study reveals a new pathway that enforces commitment to stem-like CD8+ lineage and prevents an alternative terminally exhausted cell fate.


Asunto(s)
Infecciones por Arenaviridae/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Linfocitos T CD8-positivos/metabolismo , Diferenciación Celular , Epigénesis Genética , Células Precursoras de Linfocitos T/metabolismo , Transcripción Genética , Animales , Infecciones por Arenaviridae/genética , Infecciones por Arenaviridae/inmunología , Infecciones por Arenaviridae/virología , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/deficiencia , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/virología , Linaje de la Célula , Células Cultivadas , Enfermedad Crónica , Modelos Animales de Enfermedad , Interacciones Huésped-Patógeno , Virus de la Coriomeningitis Linfocítica/inmunología , Virus de la Coriomeningitis Linfocítica/patogenicidad , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Células Precursoras de Linfocitos T/inmunología , Células Precursoras de Linfocitos T/virología , Transducción de Señal
10.
Allergy Asthma Proc ; 41(5): 372-385, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32867892

RESUMEN

Background: Allergic and autoimmune diseases comprise a group of inflammatory disorders caused by aberrant immune responses in which CD25+ forkhead box P3-positive regulatory T cells (Treg) cells that normally suppress inflammatory events are often poorly functioning. This has stimulated an intensive investigative effort to find ways of increasing Tregs as a method of therapy for these conditions. Commensal microbiota known to have health benefits in humans include the lactic acid-producing, probiotic bacteria B. longum subsp. infantis and Lactobacillus rhamnosus. Mechanistically, several mechanisms have been proposed to explain how probiotics may favorably affect host immunity, including the induction of Tregs. Analysis of emerging data from several laboratories, including our own, suggest that DNA methylation may be an important determinant of immune reactivity responsible for Treg induction. Although methylated CpG moieties in normal mammalian DNA are both noninflammatory and lack immunogenicity, unmethylated CpGs, found largely in microbial DNA, are immunostimulatory and display proinflammatory properties. Objective: We hypothesize that microbiota with more DNA methylation may potentiate Treg induction to a greater degree than microbiota with a lower content of methylation. The purpose of the present study was to test this hypothesis by studying the methylation status of whole genomic DNA (gDNA) and the Treg-inducing capacity of purified gDNA in each of the probiotic bacteria B. longum subsp. infantis and L. rhamnosus, and a pathogenic Escherichia coli strain B. Results: We showed that gDNA from B. longum subsp. infantis is a potent Treg inducer that displays a dose-dependent response pattern at a dose threshold of 20 µg of gDNA. No similar Treg-inducing responses were observed with the gDNA from L. rhamnosus or E. coli. We identified a unique CpG methylated motif in the gDNA sequencing of B. longum subsp. infantis which was not found in L. rhamnosus or E. coli strain B. Conclusion: Although the literature indicates that both B. longum subsp. infantis and L. rhamnosus strains contribute to health, our data suggest that they do so by different mechanisms. Further, because of its small molecular size, low cost, ease of synthesis, and unique Treg-inducing feature, this methylated CpG oligodeoxynucleotide (ODN) from B. longum would offer many attractive features for an ideal novel therapeutic vaccine candidate for the treatment of immunologic diseases, such as the allergic and autoimmune disorders, in which Treg populations are diminished.


Asunto(s)
Bifidobacterium longum subspecies infantis/inmunología , Islas de CpG/inmunología , ADN Bacteriano/inmunología , Microbiota/inmunología , Linfocitos T Reguladores/inmunología , Células Cultivadas , Metilación de ADN , Factores de Transcripción Forkhead/metabolismo , Genoma , Humanos , Subunidad alfa del Receptor de Interleucina-2/metabolismo , Lacticaseibacillus rhamnosus/inmunología , Activación de Linfocitos , Probióticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...