Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Neurophysiol ; 131(4): 709-722, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38478896

RESUMEN

Neurons in sensory and motor cortices tend to aggregate in clusters with similar functional properties. Within the primate dorsal ("where") pathway, an important interface between three-dimensional (3-D) visual processing and motor-related functions consists of two hierarchically organized areas: V3A and the caudal intraparietal (CIP) area. In these areas, 3-D visual information, choice-related activity, and saccade-related activity converge, often at the single-neuron level. Characterizing the clustering of functional properties in areas with mixed selectivity, such as these, may help reveal organizational principles that support sensorimotor transformations. Here we quantified the clustering of visual feature selectivity, choice-related activity, and saccade-related activity by performing correlational and parametric comparisons of the responses of well-isolated, simultaneously recorded neurons in macaque monkeys. Each functional domain showed statistically significant clustering in both areas. However, there were also domain-specific differences in the strength of clustering across the areas. Visual feature selectivity and saccade-related activity were more strongly clustered in V3A than in CIP. In contrast, choice-related activity was more strongly clustered in CIP than in V3A. These differences in clustering may reflect the areas' roles in sensorimotor processing. Stronger clustering of visual and saccade-related activity in V3A may reflect a greater role in within-domain processing, as opposed to cross-domain synthesis. In contrast, stronger clustering of choice-related activity in CIP may reflect a greater role in synthesizing information across functional domains to bridge perception and action.NEW & NOTEWORTHY The occipital and parietal cortices of macaque monkeys are bridged by hierarchically organized areas V3A and CIP. These areas support 3-D visual transformations, carry choice-related activity during 3-D perceptual tasks, and possess saccade-related activity. This study quantifies the functional clustering of neuronal response properties within V3A and CIP for each of these domains. The findings reveal domain-specific cross-area differences in clustering that may reflect the areas' roles in sensorimotor processing.


Asunto(s)
Movimientos Sacádicos , Percepción Visual , Animales , Macaca mulatta , Percepción Visual/fisiología , Neuronas/fisiología , Estimulación Luminosa/métodos
2.
Nat Commun ; 13(1): 5479, 2022 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-36123363

RESUMEN

Optic flow is a powerful cue for inferring self-motion status which is critical for postural control, spatial orientation, locomotion and navigation. In primates, neurons in extrastriate visual cortex (MSTd) are predominantly modulated by high-order optic flow patterns (e.g., spiral), yet a functional link to direct perception is lacking. Here, we applied electrical microstimulation to selectively manipulate population of MSTd neurons while macaques discriminated direction of rotation around line-of-sight (roll) or direction of linear-translation (heading), two tasks which were orthogonal in 3D spiral coordinate using a four-alternative-forced-choice paradigm. Microstimulation frequently biased animal's roll perception towards coded labeled-lines of the artificial-stimulated neurons in either context with spiral or pure-rotation stimuli. Choice frequency was also altered between roll and translation flow-pattern. Our results provide direct causal-link evidence supporting that roll signals in MSTd, despite often mixed with translation signals, can be extracted by downstream areas for perception of rotation relative to gravity-vertical.


Asunto(s)
Percepción de Movimiento , Flujo Optico , Corteza Visual , Animales , Macaca mulatta , Percepción de Movimiento/fisiología , Estimulación Luminosa/métodos , Corteza Visual/fisiología
3.
Analyst ; 146(24): 7611-7617, 2021 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-34783798

RESUMEN

In this study, a novel method that combines electrochemiluminescence (ECL) analysis and digital image processing was developed for the detection of sulfonamides. This method is based on the ECL system of ruthenium terpyridine, with 1 mM tripropylamine as a co-reactant to enhance the performance. Under the optimal conditions comprising a solution of pH 7 and a scanning rate of 0.08 V s-1, the Pt electrode has an excellent linear detection range from 5 µM to 5 mM, with a detection limit of 0.85 µM (S/N = 3). A wireless camera is used to record the light-emitting process. The recordings are processed, and the digital images are extracted using image-processing algorithms implemented in Python to calculate the brightness value of the image, which has a linear relationship with the logarithm of the sulfonamide concentration. Image analysis simplifies and improves the stability of the ECL analysis process, while also increasing the speed of analysis. The results indicate that the method can successfully detect a sulfonamide concentration of 5 µM. Thus, the analysis method of ECL combined with image processing is feasible for the detection of sulfonamides, thereby displaying its potential applicability as a novel method in drug and food safety, for instance, for sulfonamide detection in antibiotics.


Asunto(s)
Mediciones Luminiscentes , Rutenio , Electrodos , Imagen Óptica , Sulfonamidas
4.
J Cogn Neurosci ; 34(1): 192-208, 2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34813655

RESUMEN

Robust 3-D visual perception is achieved by integrating stereoscopic and perspective cues. The canonical model describing the integration of these cues assumes that perspective signals sensed by the left and right eyes are indiscriminately pooled into a single representation that contributes to perception. Here, we show that this model fails to account for 3-D motion perception. We measured the sensitivity of male macaque monkeys to 3-D motion signaled by left-eye perspective cues, right-eye perspective cues, stereoscopic cues, and all three cues combined. The monkeys exhibited idiosyncratic differences in their biases and sensitivities for each cue, including left- and right-eye perspective cues, suggesting that the signals undergo at least partially separate neural processing. Importantly, sensitivity to combined cue stimuli was greater than predicted by the canonical model, which previous studies found to account for the perception of 3-D orientation in both humans and monkeys. Instead, 3-D motion sensitivity was best explained by a model in which stereoscopic cues were integrated with left- and right-eye perspective cues whose representations were at least partially independent. These results indicate that the integration of perspective and stereoscopic cues is a shared computational strategy across 3-D processing domains. However, they also reveal a fundamental difference in how left- and right-eye perspective signals are represented for 3-D orientation versus motion perception. This difference results in more effective use of available sensory information in the processing of 3-D motion than orientation and may reflect the temporal urgency of avoiding and intercepting moving objects.


Asunto(s)
Percepción de Movimiento , Animales , Señales (Psicología) , Macaca , Masculino , Estimulación Luminosa , Percepción Visual
5.
Chem Commun (Camb) ; (43): 4548-50, 2006 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-17283814

RESUMEN

With the use of PVP (polyvinylpyrrolidone) as capping reagent, cubic, octahedral and spherical Cu2O nanocrystals were obtained in aqueous media when different reducing agents were applied. After adding selenium sources at room temperature, these nanocrystals could be converted (based on the Kirkendall effect) into hollow Cu2-xSe nanocages that keep their corresponding orignial morphologies.

6.
J Am Chem Soc ; 127(46): 16024-5, 2005 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-16287279

RESUMEN

On the basis of Kirkendall Effect, high symmetric 18-facet polyhedral nanocrystals of Cu7S4 with a hollow nanocage could be converted from cubic nanocrystals of Cu2O in an aqueous media. The presence of organic additives makes the surface energy of {110} smaller than those of {100} and {111}. The growth of nanocrystals along the normal direction of highest energy surface {100} leads to the formation of a 18-facet polyhedron.

7.
Langmuir ; 20(8): 3441-8, 2004 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-15875880

RESUMEN

Large-scale arrayed ZnO crystals with a series of novel morphologies, including tower-like, flower-like, and tube-like samples, have been successfully fabricated by a simple aqueous solution route. The morphology and orientation of the obtained ZnO crystal arrays can be conveniently tailored by changing the reactants and experimental conditions. For example, the tower-like ZnO crystal arrays were obtained in a reaction solution system including zinc salt, ammonia, ammonium salt, and thiourea, and the orientation of these tower-like crystals could be controlled by the contents of these reactants. Flower-like ZnO arrays were obtained at lower temperatures, and tube-like ZnO arrays were obtained by ultrasonic pretreatment of the reaction system. The growth mechanism of the tower-like and tube-like ZnO crystals was investigated by FESEM. The results show that tower-like crystals grow layer by layer, while tube-like crystals grow from active nanowires. Ultrasonic pretreatment is proved to be effective in promoting the formation of active nuclei, which have important effects on the formation of the tube-like ZnO crystals. In addition, large-scale arrays of these ZnO crystals can be successfully synthesized onto various substrates such as amorphous glass, crystalline quartz, and PET. This implies this chemical method has a wide application in the fabrication of nano-/microscale devices.

8.
J Colloid Interface Sci ; 252(1): 77-81, 2002 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-16290764

RESUMEN

Polyvinyl alcohol (PVA)-capped CdSe nanoparticles were successfully prepared by a one-step solution growth technique at room temperature and ambient pressure. X-ray diffraction, transmission electron microscopy, infrared spectra, and X-ray photoelectron spectra were used to characterize the final product. The as-prepared CdSe nanocrystals were well dispersed and uniform in shape and the diameter of the particles was confined within 8 nm. Ultraviolet-visible absorption spectra were used to study the confined growth process of PVA-capped CdSe nanoparticles. Photoluminescence measurement showed the near band-edge luminescence of the final product.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...