Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 409
Filtrar
1.
Foods ; 13(9)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38731688

RESUMEN

Solid-state fermentation is widely used in traditional food production, but most of the complex processes involved were designed and are carried out without a scientific basis. Often, mathematical models can be established to describe mass and heat transfer with the assistance of chemical engineering tools. However, due to the complex nature of solid-state fermentation, mathematical models alone cannot explain the many dynamic changes that occur during these processes. For example, it is hard to identify the most important variables influencing product yield and quality fluctuations. Here, using solid-state fermentation of Chinese liquor as a case study, we established statistical models to correlate the final liquor yield with available industrial data, including the starting content of starch, water and acid; starting temperature; and substrate temperature profiles throughout the process. Models based on starting concentrations and temperature profiles gave unsatisfactory yield predictions. Although the most obvious factor is the starting month, ambient temperature is unlikely to be the direct driver of differences. A lactic-acid-inhibition model indicates that lactic acid from lactic acid bacteria is likely the reason for the reduction in yield between April and December. Further integrated study strategies are necessary to confirm the most crucial variables from both microbiological and engineering perspectives. Our findings can facilitate better understanding and improvement of complex solid-state fermentations.

2.
Chem Soc Rev ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38745455

RESUMEN

Metastasis causes greater than 90% of cancer-associated deaths, presenting huge challenges for detection and efficient treatment of cancer due to its high heterogeneity and widespread dissemination to various organs. Therefore, it is imperative to combat cancer metastasis, which is the key to achieving complete cancer eradication. Immunotherapy as a systemic approach has shown promising potential to combat metastasis. However, current clinical immunotherapies are not effective for all patients or all types of cancer metastases owing to insufficient immune responses. In recent years, immunological nanomaterials with intrinsic immunogenicity or immunomodulatory agents with efficient loading have been shown to enhance immune responses to eliminate metastasis. In this review, we would like to summarize various types of immunological nanomaterials against metastasis. Moreover, this review will summarize a series of immunological nanomaterial-mediated immunotherapy strategies to combat metastasis, including immunogenic cell death, regulation of chemokines and cytokines, improving the immunosuppressive tumour microenvironment, activation of the STING pathway, enhancing cytotoxic natural killer cell activity, enhancing antigen presentation of dendritic cells, and enhancing chimeric antigen receptor T cell therapy. Furthermore, the synergistic anti-metastasis strategies based on the combinational use of immunotherapy and other therapeutic modalities will also be introduced. In addition, the nanomaterial-mediated imaging techniques (e.g., optical imaging, magnetic resonance imaging, computed tomography, photoacoustic imaging, surface-enhanced Raman scattering, radionuclide imaging, etc.) for detecting metastasis and monitoring anti-metastasis efficacy are also summarized. Finally, the current challenges and future prospects of immunological nanomaterial-based anti-metastasis are also elucidated with the intention to accelerate its clinical translation.

3.
Soft Matter ; 20(19): 3987-3995, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38686608

RESUMEN

To elucidate the effect of aromatic side chains on dilational rheological properties of N-acyltaurate amphiphiles at the decane-water interface, the interfacial rheological properties of sodium N-2-(2-naphthoxy)-tetradecanoyltaurinate (12+N-T) and sodium N-2-(p-butylphenoxy)-tetradecanoyltaurinate (12+4B-T) were investigated utilizing the drop shape analysis method. The effects of adsorption time, interfacial pressure, oscillating frequency, and bulk concentration on the interfacial dilational modulus and phase angle were explored. The results show that the 12+4B-T molecule with a longer hydrophobic chain shows a higher ability for reducing the interfacial tension (IFT). In addition, the interfacial films of both 12+N-T and 12+4B-T are dominated by diffusion exchange at high concentrations. The rigidity of molecules controls the diffusion exchange at low concentrations, while the molecular hydrodynamic radius determines the diffusion exchange at high concentrations. Thus, at low concentrations, the stronger intermolecular interaction between 12+4B-T molecules results in higher dilational modulus values than 12+N-T. When approaching the CMC (critical micelle concentration) value, the rapid diffusion exchange of 12+4B-T between the sublayer micelles and the interface causes a significant decrease in the dilational modulus, while the relatively rigid structure of 12+N-T enables a higher dilational modulus than 12+4B-T. What's more, the longer hydrophobic chain allows 12+4B-T molecules to escape from the interface more easily, resulting in a higher phase angle at low concentrations. However, the diffusion exchange of 12+4B-T is slower than that of 12+N-T, which results in lower phase angles for 12+4B-T than 12+N-T at high concentrations. In general, the introduction of a rigid naphthalene ring in the molecular structure gives the interfacial film greater strength at high concentration. The research results in this paper provide a new technique for the strength regulation of interfacial surfactant adsorption films.

5.
Adv Sci (Weinh) ; : e2402516, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38582500

RESUMEN

Cuproptosis is a newly discovered form of programmed cell death significantly depending on the transport efficacy of copper (Cu) ionophores. However, existing Cu ionophores, primarily small molecules with a short blood half-life, face challenges in transporting enough amounts of Cu ions into tumor cells. This work describes the construction of carrier-free nanoparticles (Ce6@Cu NPs), which self-assembled by the coordination of Cu2+ with the sonosensitizer chlorin e6 (Ce6), facilitating sonodynamic-triggered combination of cuproptosis and ferroptosis. Ce6@Cu NPs internalized by U87MG cells induce a sonodynamic effect and glutathione (GSH) depletion capability, promoting lipid peroxidation and eventually inducing ferroptosis. Furthermore, Cu+ concentration in tumor cells significantly increases as Cu2+ reacts with reductive GSH, resulting in the downregulation of ferredoxin-1 and lipoyl synthase. This induces the oligomerization of lipoylated dihydrolipoamide S-acetyltransferase, causing proteotoxic stress and irreversible cuproptosis. Ce6@Cu NPs possess a satisfactory ability to penetrate the blood-brain barrier, resulting in significant accumulation in orthotopic U87MG-Luc glioblastoma. The sonodynamic-triggered combination of ferroptosis and cuproptosis in the tumor by Ce6@Cu NPs is evidenced both in vitro and in vivo with minimal side effects. This work represents a promising tumor therapeutic strategy combining ferroptosis and cuproptosis, potentially inspiring further research in developing logical and effective cancer therapies based on cuproptosis.

6.
J Exp Clin Cancer Res ; 43(1): 129, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38685125

RESUMEN

BACKGROUND: Circulating tumor cells (CTCs) hold immense promise in guiding treatment strategies for advanced gastric cancer (GC). However, their clinical impact has been limited due to challenges in identifying epithelial-mesenchymal transition (EMT)-CTCs using conventional methods. METHODS: To bridge this knowledge gap, we established a detection platform for CTCs based on the distinctive biomarker cell surface vimentin (CSV). A prospective study involving 127 GC patients was conducted, comparing CTCs enumeration using both EpCAM and CSV. This approach enabled the detection of both regular and EMT-CTCs, providing a comprehensive analysis. Spiking assays and WES were employed to verify the reliability of this marker and technique. To explore the potential inducer of CSV+CTCs formation, a combination of Tandem Mass Tag (TMT) quantitative proteomics, m6A RNA immunoprecipitation-qPCR (MeRIP-qPCR), single-base elongation- and ligation-based qPCR amplification method (SELECT) and RNA sequencing (RNA-seq) were utilized to screen and confirm the potential target gene. Both in vitro and in vivo experiments were performed to explore the molecular mechanism of CSV expression regulation and its role in GC metastasis. RESULTS: Our findings revealed the potential of CSV in predicting therapeutic responses and long-term prognosis for advanced GC patients. Additionally, compared to the conventional EpCAM-based CTCs detection method, the CSV-specific positive selection CTCs assay was significantly better for evaluating the therapeutic response and prognosis in advanced GC patients and successfully predicted disease progression 14.25 months earlier than radiology evaluation. Apart from its excellent role as a detection marker, CSV emerges as a promising therapeutic target for attenuating GC metastasis. It was found that fat mass and obesity associated protein (FTO) could act as a potential catalyst for CSV+CTCs formation, and its impact on the insulin-like growth factor-I receptor (IGF-IR) mRNA decay through m6A modification. The activation of IGF-I/IGF-IR signaling enhanced the translocation of vimentin from the cytoplasm to the cell surface through phosphorylation of vimentin at serine 39 (S39). In a GC mouse model, the simultaneous inhibition of CSV and blockade of the IGF-IR pathway yielded promising outcomes. CONCLUSION: In summary, leveraging CSV as a universal CTCs marker represents a significant breakthrough in advancing personalized medicine for patients with advanced GC. This research not only paves the way for tailored therapeutic strategies but also underscores the pivotal role of CSV in enhancing GC management, opening new frontiers for precision medicine.


Asunto(s)
Biomarcadores de Tumor , Células Neoplásicas Circulantes , Neoplasias Gástricas , Vimentina , Animales , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Biomarcadores de Tumor/metabolismo , Línea Celular Tumoral , Transición Epitelial-Mesenquimal , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patología , Estudios Prospectivos , Neoplasias Gástricas/patología , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/genética , Vimentina/metabolismo
7.
Ecotoxicol Environ Saf ; 277: 116391, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38678792

RESUMEN

Prenatal exposure to diethylhexyl phthalate (DEHP) has been linked with a decline in testosterone levels in adult male rats, but the underlying mechanism remains unclear. We investigated the potential epigenetic regulation, particularly focusing on N6-methyladenosine (m6A) modification, as a possible mechanism. Dams were gavaged with DEHP (0, 10, 100, and 750 mg/kg/day) from gestational day 14 to day 21. The male offspring were examined at the age of 56 days. Prenatal DEHP administration at 750 mg/kg/day caused a decline in testosterone concentrations, an elevation in follicle-stimulating hormone, a downregulated expression of CYP11A1 HSD3B2, without affecting Leydig cell numbers. Interestingly, Methyltransferase Like 4 (METTL4), an m6A methyltransferase, was downregulated, while there were no changes in METTL3 and METTL14. Moreover, CYP11A1 showed m6A reduction in response to prenatal DEHP exposure. Additionally, METTL4 expression increased postnatally, peaking in adulthood. Knockdown of METTL4 resulted in the downregulation of CYP11A1 and HSD3B2 and an increase in SCARB1 expression. Furthermore, the increase in autophagy protection in adult Leydig cells induced by prenatal DEHP exposure was not affected by 3-methyladenosine (3MA) treatment, indicating a potential protective role of autophagy in response to DEHP exposure. In conclusion, prenatal DEHP exposure reduces testosterone by downregulating CYP11A1 and HSD3B2 via m6A epigenetic regulation and induction of autophagy protection in adult Leydig cells as a response to DEHP exposure.


Asunto(s)
Dietilhexil Ftalato , Regulación hacia Abajo , Epigénesis Genética , Células Intersticiales del Testículo , Metiltransferasas , Efectos Tardíos de la Exposición Prenatal , Testosterona , Animales , Femenino , Masculino , Embarazo , Ratas , Adenosina/análogos & derivados , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/genética , Dietilhexil Ftalato/toxicidad , Dietilhexil Ftalato/análogos & derivados , Regulación hacia Abajo/efectos de los fármacos , Epigénesis Genética/efectos de los fármacos , Células Intersticiales del Testículo/efectos de los fármacos , Metiltransferasas/genética , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Ratas Sprague-Dawley , Testosterona/sangre
8.
Ecotoxicol Environ Saf ; 273: 116173, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38452703

RESUMEN

Per- and polyfluoroalkyl (PFAS) substances are enduring industrial materials. 17ß-Hydroxysteroid dehydrogenase isoform 1 (17ß-HSD1) is an estrogen metabolizing enzyme, which transforms estrone into estradiol in human placenta and rat ovary. Whether PFAS inhibit 17ß-HSD1 and what the structure-activity relationship (SAR) remains unexplored. We screened 18 PFAS for inhibiting human and rat 17ß-HSD1 in microsomes and studied their SAR and mode of action(MOA). Of the 11 perfluorocarboxylic acids (PFCAs), C8-C14 PFCAs at a concentration of 100 µM substantially inhibited human 17ß-HSD1, with order of C11 (half-maximal inhibition concentration, IC50, 8.94 µM) > C10 (10.52 µM) > C12 (14.90 µM) > C13 (30.97 µM) > C9 (43.20 µM) > C14 (44.83 µM) > C8 (73.38 µM) > others. Of the 7 per- and poly-fluorosulfonic acids (PFSAs), the potency was C8S (IC50, 14.93 µM) > C7S (80.70 µM) > C6S (177.80 µM) > others. Of the PFCAs, C8-C14 PFCAs at 100 µM markedly reduced rat 17ß-HSD1 activity, with order of C11 (IC50, 9.11 µM) > C12 (14.30 µM) > C10 (18.24 µM) > C13 (25.61 µM) > C9 (67.96 µM) > C8 (204.39 µM) > others. Of the PFSAs, the potency was C8S (IC50, 37.19 µM) > C7S (49.38 µM) > others. In contrast to PFOS (C6S), the partially fluorinated compound 6:2 FTS with an equivalent number of carbon atoms demonstrated no inhibition of human and rat 17ß-HSD1 activity at a concentration of 100 µM. The inhibition of human and rat enzymes by PFAS followed a V-shaped trend from C4 to C14, with a nadir at C11. Moreover, human 17ß-HSD1 was more sensitive than rat enzyme. PFAS inhibited human and rat 17ß-HSD1 in a mixed mode. Docking analysis revealed that they bind to the NADPH and steroid binding site of both 17ß-HSD1 enzymes. The 3D quantitative SAR (3D-QSAR) showed that hydrophobic region, hydrogen bond acceptor and donor are key factors in binding to 17ß-HSD1 active sites. In conclusion, PFAS exhibit inhibitory effects on human and rat 17ß-HSD1 depending on factors such as carbon chain length, degree of fluorination, and the presence of carboxylic acid or sulfonic acid groups, with a notable V-shaped shift observed at C11.


Asunto(s)
Fluorocarburos , Relación Estructura-Actividad Cuantitativa , Embarazo , Femenino , Humanos , Animales , Ratas , Simulación del Acoplamiento Molecular , 17-Hidroxiesteroide Deshidrogenasas/química , 17-Hidroxiesteroide Deshidrogenasas/metabolismo , Estrona , Carbono , Fluorocarburos/toxicidad
9.
Medicine (Baltimore) ; 103(11): e37513, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38489728

RESUMEN

BACKGROUND: While papillary thyroid carcinoma (PTC) generally exhibits a favorable prognosis post-surgery, the poorly differentiated subtype presents elevated rates of postoperative recurrence. Certain aggressive cases demonstrate invasive behavior, compromising adjacent structures and leading to a poor prognosis. This study delineates a unique case of postoperative PTC recurrence, complicated by esophageal fistula, that showed favorable outcomes following brief Vemurafenib treatment. PATIENT DESCRIPTION: A 64-year-old female patient underwent surgical resection for PTC, subsequently experiencing rapid tumor recurrence and development of an esophageal fistula. DIAGNOSIS: The patient was confirmed to have locally advanced PTC through intraoperative cytopathology. The cancer recurred postoperatively, culminating in the formation of an esophageal fistula. METHODS: The patient was administered Vemurafenib at a dosage of 960 mg twice daily following tumor recurrence. RESULTS: A 12-month regimen of targeted Vemurafenib therapy led to a substantial reduction in tumor size. Concurrently, the esophageal fistula underwent complete healing, facilitating successful removal of the gastrostomy tube. The tumor response was classified as stable disease. CONCLUSION SUBSECTIONS: Vemurafenib demonstrates potential as a targeted therapeutic strategy for recurrent PTC harboring the BRAFV600E mutation. This approach may effectively mitigate tumor dimensions and the associated risk of esophageal and tracheal fistulas.


Asunto(s)
Carcinoma Papilar , Carcinoma , Fístula Esofágica , Neoplasias de la Tiroides , Femenino , Humanos , Persona de Mediana Edad , Cáncer Papilar Tiroideo , Vemurafenib/uso terapéutico , Neoplasias de la Tiroides/complicaciones , Neoplasias de la Tiroides/tratamiento farmacológico , Neoplasias de la Tiroides/cirugía , Carcinoma/tratamiento farmacológico , Carcinoma/cirugía , Carcinoma/genética , Carcinoma Papilar/tratamiento farmacológico , Carcinoma Papilar/cirugía , Carcinoma Papilar/patología , Recurrencia Local de Neoplasia/patología , Pronóstico
10.
Biomaterials ; 307: 122534, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38518589

RESUMEN

Despite of the recent advances in regulatory T cell (Treg) therapy, a limited number of available cells and specificity at the desired tissue site have severely compromised their efficacy. Herein, an injectable drug-releasing (MTK-TK-drug) microgel system in response to in situ stimulation by reactive oxygen species (ROS) was constructed with a coaxial capillary microfluidic system and UV curing. The spherical microgels with a size of 150 µm were obtained. The MTK-TK-drug microgels efficiently converted the pro-inflammatory Th17 cells into anti-inflammatory regulatory T cells (Treg) cells in vitro, and the ROS-scavenging materials synergistically enhanced the effect by modulating the inflammation microenvironment. Thus, the microgels significantly reduced cardiomyocyte apoptosis and decreased the inflammatory response in the early stages of post-myocardial infarction (MI) in vivo, thereby reducing fibrosis, promoting vascularization, and preserving cardiac function. Overall, our results indicate that the MTK-TK-drug microgels can attenuate the inflammatory response and improve MI therapeutic effects in vivo.


Asunto(s)
Microgeles , Infarto del Miocardio , Humanos , Especies Reactivas de Oxígeno , Infarto del Miocardio/tratamiento farmacológico , Linfocitos T Reguladores , Microfluídica
11.
Sci Rep ; 14(1): 7073, 2024 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-38528144

RESUMEN

To assess the skiing economy (SE) and kinematics during double poling (DP) roller skiing between two groups of skiers in a field setting. Five experienced and five novice male skiers performed a SEDP test at 16 km∙h-1 on an outdoor athletics track. Gas exchange parameters were measured to determine SEDP. A two-dimensional video was filmed to measure the kinematics variables. Experienced skiers exhibited a 21% lower oxygen cost than novice skiers (p = 0.016) in DP, indicating a strong association between SEDP, cycle length and cycle rate (p < 0.001). Additionally, before the poling phase, experienced skiers manifested significantly greater maximum hip and knee extension angles than novice skiers (p < 0.001). During the poling phase, experienced skiers with a greater pole plant angle (p = 0.001), longer flexion time (p < 0.001) and higher flexion angular velocity in the elbow joint (p < 0.05) demonstrated better SEDP. There was an interaction effect of the one-repetition maximum bench press × group in SEDP (b = - 0.656, SE = 0.097, t = - 6.78, p = 0.001). Therefore, experienced skiers with better SEDP demonstrated more efficient cycles, potentially accomplished using dynamic full-body DP motion to ascertain effective propulsion. Combined upper body strength and ski-specific skill training may enhance SEDP in novice skiers.


Asunto(s)
Prueba de Esfuerzo , Esquí , Fenómenos Biomecánicos , Extremidad Inferior , Articulación de la Rodilla , Consumo de Oxígeno
12.
J Steroid Biochem Mol Biol ; 240: 106510, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38508472

RESUMEN

The objective of this study was to examine the effect of 11 organochlorine pesticides on human and rat 17ß-Hydroxysteroid dehydrogenase 1 (17ß-HSD1) in human placental and rat ovarian microsome and on estradiol production in BeWo cells. The results showed that the IC50 values for endosulfan, fenhexamid, chlordecone, and rhothane on human 17ß-HSD1 were 21.37, 73.25, 92.80, and 117.69 µM. Kinetic analysis revealed that endosulfan acts as a competitive inhibitor, fenhexamid as a mixed/competitive inhibitor, chlordecone and rhothane as a mixed/uncompetitive inhibitor. In BeWo cells, all insecticides except endosulfan significantly decreased estradiol production at 100 µM. For rats, the IC50 values for dimethomorph, fenhexamid, and chlordecone were 11.98, 36.92, and 109.14 µM. Dimethomorph acts as a mixed inhibitor, while fenhexamid acts as a mixed/competitive inhibitor. Docking analysis revealed that endosulfan and fenhexamid bind to the steroid-binding site of human 17ß-HSD1. On the other hand, chlordecone and rhothane binds to a different site other than the steroid and NADPH-binding site. Dimethomorph binds to the steroid/NADPH binding site, and fenhexamid binds to the steroid binding site of rat 17ß-HSD1. Bivariate correlation analysis showed a positive correlation between IC50 values and LogP for human 17ß-HSD1, while a slight negative correlation was observed between IC50 values and the number of HBA. ADMET analysis provided insights into the toxicokinetics and toxicity of organochlorine pesticides. In conclusion, this study identified the inhibitory effects of 3-4 organochlorine pesticides and binding mechanisms on human and rat 17ß-HSD1, as well as their impact on hormone production.


Asunto(s)
Hidrocarburos Clorados , Simulación del Acoplamiento Molecular , Plaguicidas , Animales , Humanos , Ratas , Hidrocarburos Clorados/química , Hidrocarburos Clorados/farmacología , Relación Estructura-Actividad , Femenino , Plaguicidas/química , Plaguicidas/metabolismo , 17-Hidroxiesteroide Deshidrogenasas/antagonistas & inhibidores , 17-Hidroxiesteroide Deshidrogenasas/metabolismo , 17-Hidroxiesteroide Deshidrogenasas/química , Embarazo , Placenta/metabolismo , Estradiol/metabolismo , Estradiol/química , Insecticidas/química , Insecticidas/farmacología
13.
Nat Commun ; 15(1): 1123, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38321028

RESUMEN

Shape-memory materials hold great potential to impart medical devices with functionalities useful during implantation, locomotion, drug delivery, and removal. However, their clinical translation is limited by a lack of non-invasive and precise methods to trigger and control the shape recovery, especially for devices implanted in deep tissues. In this study, the application of image-guided high-intensity focused ultrasound (HIFU) heating is tested. Magnetic resonance-guided HIFU triggered shape-recovery of a device made of polyurethane urea while monitoring its temperature by magnetic resonance thermometry. Deformation of the polyurethane urea in a live canine bladder (5 cm deep) is achieved with 8 seconds of ultrasound-guided HIFU with millimeter resolution energy focus. Tissue sections show no hyperthermic tissue injury. A conceptual application in ureteral stent shape-recovery reduces removal resistance. In conclusion, image-guided HIFU demonstrates deep energy penetration, safety and speed.


Asunto(s)
Ultrasonido Enfocado de Alta Intensidad de Ablación , Poliuretanos , Animales , Perros , Calefacción , Imagen por Resonancia Magnética/métodos , Ultrasonido Enfocado de Alta Intensidad de Ablación/métodos , Urea
14.
Angew Chem Int Ed Engl ; 63(16): e202319982, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38361437

RESUMEN

Enzymes are considered safe and effective therapeutic tools for various diseases. With the increasing integration of biomedicine and nanotechnology, artificial nanozymes offer advanced controllability and functionality in medical design. However, several notable gaps, such as catalytic diversity, specificity and biosafety, still exist between nanozymes and their native counterparts. Here we report a non-metal single-selenium (Se)-atom nanozyme (SeSAE), which exhibits potent nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-mimetic activity. This novel single atom nanozyme provides a safe alternative to conventional metal-based catalysts and effectively cuts off the cellular energy and reduction equivalents through its distinctive catalytic function in tumors. In this study, we have demonstrated the substantial efficacy of SeSAE as an antitumor nanomedicine across diverse mouse models without discernible systemic adverse effects. The mechanism of the NADPH oxidase-like activity of the non-metal SeSAE was rationalized by density functional theory calculations. Furthermore, comprehensive elucidation of the biological functions, cell death pathways, and metabolic remodeling effects of the nanozyme was conducted, aiming to provide valuable insights into the development of single atom nanozymes with clinical translation potential.


Asunto(s)
Nanotecnología , Neoplasias , Animales , Ratones , Metales , Catálisis , Neoplasias/tratamiento farmacológico , Nanomedicina
15.
Sci Rep ; 14(1): 3510, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38347091

RESUMEN

To address the phenomenon of many small and hard-to-detect objects in infrared and visible light images, we propose an object detection algorithm CDYL (Convolution to Fully Connect-ed-Deformable Convolution You only Look once) based on the CFC-DC (Convolution to Fully Connected-Deformable Convolution) module. The core operator of CDYL is CFC-DC, making our model not only have a large effective receptive field in infrared and visible light images, but also have adaptive spatial aggregation conditioned by input and task information. As a result, the CDYL reduces the strict inductive bias of traditional CNNs and has long-range dependence for large kernel convolution as well as adaptive spatial aggregation, deeply mining of edge and correlation information in images to enhance sensitivity to small objects, thereby improving performance in dense small object detection tasks. In order to improve the ability of the CFC-DC module to perceive the detailed information of the image, we use the Mish activation function, which has a wider minima which improves the generalization. The effectiveness as well as the generalization of CDYL is evaluated on an infrared image dataset and an UAV image dataset, and it is compared with other state-of-the-art object detection algorithms. Compared to the baseline network YOLOv8l, our model achieved a 3.0% improvement in mAP0.5 in infrared image detection tasks and a 1.1% improvement in mAP0.5 in visible light image detection tasks. The experimental results show that the proposed algorithm achieves superior average precision values on both infrared and visible light images, while maintaining a light weight. Code is publicly available at https://github.com/yangzhu1/CDYL .

16.
ACS Omega ; 9(1): 401-412, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38222502

RESUMEN

Although both the function and biocompatibility of protein-based biomaterials are better than those of synthetic materials, their usage as medical material is currently limited by their high costs, low yield, and low batch-to-batch reproducibility. In this article, we show how α-lactalbumin (α-LA), rich in tryptophan, was used to produce a novel type of naturally occurring, protein-based biomaterial suitable for wound dressing. To create a photo-cross-linkable polymer, α-LA was methacrylated at a 100-g batch scale with >95% conversion and 90% yield. α-LAMA was further processed using photo-cross-linking-based advanced processing techniques such as microfluidics and 3D printing to create injectable hydrogels, monodispersed microspheres, and patterned scaffolds. The obtained α-LAMA hydrogels show promising biocompatibility and degradability during in vivo testing. Additionally, the α-LAMA hydrogel can accelerate post-traumatic wound healing and promote new tissue regeneration. In conclusion, cheap and safe α-LAMA-based biomaterials could be produced, and they have a beneficial effect on wound healing. As a result, there may arise a potential partnership between the dairy industry and the development of pharmaceuticals.

17.
Bioact Mater ; 34: 414-421, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38292411

RESUMEN

Tumor hypoxia diminishes the effectiveness of traditional type II photodynamic therapy (PDT) due to oxygen consumption. Type I PDT, which can operate independently of oxygen, is a viable option for treating hypoxic tumors. In this study, we have designed and synthesized JSK@PEG-IR820 NPs that are responsive to the tumor microenvironment (TME) to enhance type I PDT through glutathione (GSH) depletion. Our approach aims to expand the sources of therapeutic benefits by promoting the generation of superoxide radicals (O2-.) while minimizing their consumption. The diisopropyl group within PEG-IR820 serves a dual purpose: it functions as a pH sensor for the disassembly of the NPs to release JSK and enhances intermolecular electron transfer to IR820, facilitating efficient O2-. generation. Simultaneously, the release of JSK leads to GSH depletion, resulting in the generation of nitric oxide (NO). This, in turn, contributes to the formation of highly cytotoxic peroxynitrite (ONOO-.), thereby enhancing the therapeutic efficacy of these NPs. NIR-II fluorescence imaging guided therapy has achieved successful tumor eradication with the assistance of laser therapy.

18.
Regen Biomater ; 11: rbad103, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38173776

RESUMEN

Metal ions participate in many metabolic processes in the human body, and their homeostasis is crucial for life. In cardiovascular diseases (CVDs), the equilibriums of metal ions are frequently interrupted, which are related to a variety of disturbances of physiological processes leading to abnormal cardiac functions. Exogenous supplement of metal ions has the potential to work as therapeutic strategies for the treatment of CVDs. Compared with other therapeutic drugs, metal ions possess broad availability, good stability and safety and diverse drug delivery strategies. The delivery strategies of metal ions are important to exert their therapeutic effects and reduce the potential toxic side effects for cardiovascular applications, which are also receiving increasing attention. Controllable local delivery strategies for metal ions based on various biomaterials are constantly being designed. In this review, we comprehensively summarized the positive roles of metal ions in the treatment of CVDs from three aspects: protecting cells from oxidative stress, inducing angiogenesis, and adjusting the functions of ion channels. In addition, we introduced the transferability of metal ions in vascular reconstruction and cardiac tissue repair, as well as the currently available engineered strategies for the precise delivery of metal ions, such as integrated with nanoparticles, hydrogels and scaffolds.

19.
Environ Toxicol ; 39(5): 2560-2571, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38189224

RESUMEN

Chlorinated bisphenol A (BPA) derivatives are formed during chlorination process of drinking water, whereas bisphenol S (BPS) and brominated BPA and BPS (TBBPA and TBBPS) were synthesized for many industrial uses such as fire retardants. However, the effect of halogenated BPA and BPS derivatives on glucocorticoid metabolizing enzyme 11ß-hydroxysteroid dehydrogenase 1 (11ß-HSD1) remains unclear. The inhibitory effects of 6 BPA derivatives in the inhibition of human and rat 11ß-HSD1 were investigated. The potencies for inhibition on human 11ß-HSD1 were TBBPA (IC50, 3.87 µM) = monochloro BPA (MCBPA, 4.08 µM) = trichloro BPA (TrCBPA, 4.41 µM) > tetrachloro BPA (TCBPA, 9.75 µM) > TBBPS (>100 µM) = BPS (>100 µM), and those for rat 11ß-HSD1 were TrCBPA (IC50, 2.76 µM) = MCBPA (3.75 µM) > TBBPA (39.58 µM) > TCBPA = TBBPS = BPS. All these BPA derivatives are mixed/competitive inhibitors of both human and rat enzymes. Molecular docking studies predict that MCBPA, TrCBPA, TCBPA, and TBBPA all bind to the active site of human 11ß-HSD1, forming hydrogen bonds with catalytic residue Ser170 except TCBPA. Regression of the lowest binding energy with IC50 values revealed a significant inverse linear regression. In conclusion, halogenated BPA derivatives are mostly potent inhibitors of human and rat 11ß-HSD1, and there is structure-dependent inhibition.


Asunto(s)
11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1 , Compuestos de Bencidrilo , Fenoles , Bifenilos Polibrominados , Humanos , Ratas , Animales , Simulación del Acoplamiento Molecular , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/química , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/metabolismo , Relación Estructura-Actividad
20.
Oncologist ; 29(1): e90-e96, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37616529

RESUMEN

BACKGROUND: Natural killer/T-cell lymphoma (NKTCL) is a rare and heterogeneous tumor type of non-Hodgkin's lymphoma (NHL) with a poor clinical outcome. There is no standardized salvage treatment failing l-asparaginase-based regimens. Here we report our retrospective results of the combined use of selinexor and PD-1 blockade (tislelizumab) in 5 patients with NKTCL who had exhausted almost all available treatments. PATIENTS AND METHODS: A total of 5 patients with relapsed/refractory(R/R) NK/T-cell lymphomas failing prior l-asparaginase and anti-PD-1 antibody were retrospectively collected. They were treated with at least one cycle of XPO1 inhibitor plus the same anti-PD-1 antibody. Anti-PD-1 antibody (Tislelizumab) was administrated at 200 mg on day 1 every 3 weeks and selinexor doses and schedules ranged from 40 mg weekly for 2 weeks per 21-day cycle to 60 mg weekly per cycle. RESULTS: Five patients with relapsed NKTCL with extensive organ involvement including 4 central nervous system (CNS) infiltration patients were included. Four patients achieved objective responses including 3 complete responses (CR) and 1 partial response (PR). After a median follow-up time of 14.5 (range, 5-22) months, 1 patient was still in remission with CR, and the other 4 patients discontinued due to disease progression with a median progression-free survival (PFS) of 6 months and median overall survival (OS) of 12 months. Four patients with CNS involvement achieved a median OS of 8 months. Our data suggest that selinexor in combination with an anti-PD-1 antibody is a promising small molecule and immunotherapy combination regimen for patients with relapsed or refractory NKTCL.


Asunto(s)
Linfoma de Células T , Linfoma , Humanos , Asparaginasa/uso terapéutico , Estudios Retrospectivos , Receptor de Muerte Celular Programada 1/uso terapéutico , Recurrencia Local de Neoplasia/tratamiento farmacológico , Linfoma de Células T/tratamiento farmacológico , Células Asesinas Naturales , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...