Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
1.
ACS Pharmacol Transl Sci ; 7(5): 1386-1394, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38751617

RESUMEN

Advanced metastatic colorectal cancer (mCRC) and the development of drug resistance to chemotherapy pose significant challenges in clinical settings. In previous studies, we have demonstrated the potent cytotoxic activity of (E)-3-(6-fluoro-1H-indol-3-yl)-2-methyl-1-(3,4,5-trimethoxyphenyl)prop-2-en-1-one (FC116) and related 30 derivatives against mCRC by targeting microtubules. In this study, we aimed to evaluate the efficacy of the 31 compounds and explore the structure-activity relationship (SAR) against oxaliplatin-resistant mCRC. We found that most of the derivatives showed high sensitivity toward the oxaliplatin-resistant HCT-116/L cells. Particularly, FC116 exhibited a better GI50 value against the resistant mCRC cell line, HCT-116/L, compared to standard therapies. We also observed a safer therapeutic window for FC116 and a synergistic effect when it was used in combination with oxaliplatin. Mechanistically, FC116 induced the G2/M phase arrest by downregulating cyclin B1 expression through its interaction with microtubules in resistant colorectal cancer cells. Furthermore, in vivo experiments demonstrated that FC116 significantly suppressed tumor growth, achieving a 78% reduction at a dose of 3 mg/kg, which was superior to the 40% reduction achieved by oxaliplatin treatment. Overall, our findings suggest that the indole-chalcone compound FC116 represents a promising lead for chemotherapy in oxaliplatin-resistant mCRC.

2.
J Hepatol ; 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38670321

RESUMEN

BACKGROUND & AIMS: The precise pathomechanisms underlying the development of nonalcoholic steatohepatitis (NASH, also known as metabolic dysfunction-associated steatohepatitis [MASH]) remain incompletely understood. This study investigates the potential role of EF-hand domain family member D2 (EFHD2), a novel molecule specific to immune cells, in NASH pathogenesis. METHODS: Hepatic EFHD2 expression was characterized in NASH patients and two diet-induced NASH mouse models. Single-cell RNA-sequencing (scRNA-seq) and double-immunohistochemistry were employed to explore EFHD2 expression patterns in NASH livers. The effects of global and myeloid-specific EFHD2 deletion on NASH and NASH-related hepatocellular carcinoma (HCC) were assessed. Molecular mechanisms underlying EFHD2 function were investigated, along with its potential as a therapeutic target by chemical and genetic means. RESULTS: EFHD2 expression was significantly elevated in liver tissue macrophages/monocytes in both NASH patients and mice. Deletion of EFHD2, either globally or specifically in myeloid cells, improved hepatic steatosis, reduced immune cell infiltration, inhibited lipid peroxidation-induced ferroptosis, and attenuated fibrosis in NASH. Additionally, it hindered the development of NASH-related HCC. Specifically, deletion of myeloid EFHD2 prevented the replacement of TIM4+ resident Kupffer cells by infiltrated monocytes and reversed the decreases in patrolling monocytes and CD4+/CD8+ T cell ratio in NASH. Mechanistically, our investigation revealed that EFHD2 in myeloid cells interacts with cytosolic YWHAZ (14-3-3ζ), facilitating the translocation of interferon-γ receptor-2 (IFNγR2) onto the plasma membrane. This interaction mediates IFNγ signaling, which triggers immune and inflammatory responses in macrophages during NASH. Finally, a developed stapled α-helical peptide targeting EFHD2 demonstrated its efficacy in protecting against NASH pathology in mice. CONCLUSION: Our study reveals a pivotal immunomodulatory and inflammatory role of EFHD2 in NASH, underscoring EFHD2 as a promising druggable target for NASH treatment. IMPACT AND IMPLICATIONS: Nonalcoholic steatohepatitis (NASH) represents an advanced stage of non-alcoholic fatty liver disease (NAFLD); however, not all NAFLD patients progress to NASH. A key challenge is identifying the factors triggering inflammation, which propels the transition from simple fatty liver to NASH. Our research pinpointed EFHD2 as a pivotal driver of NASH, orchestrating the over-activation of IFNγ signaling within the liver during NASH progression. A stapled peptide designed to target EFHD2 exhibited therapeutic promise in NASH mice. These findings suggest EFHD2 as a promising target for drug development aimed at NASH treatment.

3.
Br J Pharmacol ; 2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38555910

RESUMEN

BACKGROUND AND PURPOSE: Tumour necrosis factor (TNF) is a pleiotropic inflammatory cytokine that not only directly induces inflammatory gene expression but also triggers apoptotic and necroptotic cell death, which leads to tissue damage and indirectly exacerbates inflammation. Thus, identification of inhibitors for TNF-induced cell death has broad therapeutic relevance for TNF-related inflammatory diseases. In the present study, we isolated and identified a marine fungus-derived sesquiterpenoid, 9α,14-dihydroxy-6ß-p-nitrobenzoylcinnamolide (named as Cpd-8), that inhibits TNF receptor superfamily-induced cell death by preventing the formation of cytosolic death complex II. EXPERIMENTAL APPROACH: Marine sponge-associated fungi were cultured and the secondary metabolites were extracted to yield pure compounds. Cell viability was measured by ATP-Glo cell viability assay. The effects of Cpd-8 on TNF signalling pathway were investigated by western blotting, immunoprecipitation, and immunofluorescence assays. A mouse model of acute liver injury (ALI) was employed to explore the protection effect of Cpd-8, in vivo. KEY RESULTS: Cpd-8 selectively inhibits TNF receptor superfamily-induced apoptosis and necroptosis. Cpd-8 prevents the formation of cytosolic death complex II and subsequent RIPK1-RIPK3 necrosome, while it has no effect on TNF receptor I (TNFR1) internalization and the formation of complex I in TNF signalling pathway. In vivo, Cpd-8 protects mice against TNF-α/D-GalN-induced ALI. CONCLUSION AND IMPLICATIONS: A marine fungus-derived sesquiterpenoid, Cpd-8, inhibits TNF receptor superfamily-induced cell death, both in vitro and in vivo. This study not only provides a useful research tool to investigate the regulatory mechanisms of TNF-induced cell death but also identifies a promising lead compound for future drug development.

4.
Bioorg Med Chem ; 102: 117659, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38442525

RESUMEN

Necroptosis is an important form of programmed cell death (PCD), which is mediated by a death receptor and independent of the caspase proteolytic enzyme. Mixed lineage kinase domain-like (MLKL) is the final effector of necroptosis, playing an irreplaceable role in the execution of necroptosis. However, the studies on MLKL inhibitors are in their infancy. Necrosulfonamide (NSA) is an early-discovered covalent MLKL inhibitor, possessing medium anti-necroptosis activity and a structure-activity relationship (SAR) not widely disclosed. In this study, with the covalent motif maintained, we aim to improve the activity by introducing the terminal fused heterocycles and meanwhile revealing the SAR on the part. As a result, compounds 9 and 14 showed the best activity (EC50 = 148.4 and 595.9 nM) against necroptosis among the analogues by covalently binding to MLKL. The SAR was also concluded to guide further structural optimization in this field.


Asunto(s)
Necroptosis , Proteínas Quinasas , Proteínas Quinasas/metabolismo , Apoptosis , Fosforilación
5.
J Med Chem ; 67(6): 4889-4903, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38485922

RESUMEN

Directly blocking the Keap1-Nrf2 pathway is a promising strategy for the mitigation of acute lung injury (ALI). Peptide Keap1-Nrf2 inhibitors have been reported to have a high Keap1 binding affinity. However, these inhibitors showed weak activity in cells and/or animals. In this study, we designed a series of linear peptides from an Nrf2-based 9-mer Ac-LDEETGEFL-NH2. To improve the cellular activity, we further designed cyclic peptides based on the crystal complex of Keap1 with a linear peptide. Among them, cyclic 9-mer ZC9 targeting Keap1 showed a better affinity (KD2 = 51 nM). Specifically, it exhibited an acceptable water solubility (>38 mg/mL), better cell permeability, cell activity, and metabolic stability (serum t1/2 > 24 h). In the in vitro LPS-induced oxidative damages and ALI model, ZC9 showed significant dose-response reversal activity without apparent toxicity. In conclusion, our results suggested ZC9 as a lead cyclic peptide targeting the Keap1-Nrf2 pathway for ALI clinical treatment.


Asunto(s)
Lesión Pulmonar Aguda , Péptidos Cíclicos , Animales , Péptidos Cíclicos/farmacología , Péptidos Cíclicos/uso terapéutico , Péptidos Cíclicos/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Péptidos/farmacología , Péptidos/uso terapéutico , Péptidos/química , Lesión Pulmonar Aguda/tratamiento farmacológico
6.
Bioorg Med Chem ; 100: 117611, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38309200

RESUMEN

Systemic inflammatory response syndrome (SIRS), an exaggerated defense response of the organism to a noxious stressor, involves a massive inflammatory cascade that ultimately leads to reversible or irreversible end-organ dysfunction and even death. Suppressing RIPK1, a key protein in necroptosis pathway, has been proven to be an effective therapeutic strategy for inflammation and SIRS. In this study, a series of novel biaryl benzoxazepinone RIPK1 inhibitors were designed and synthesized by introducing different aryl substituents at the C7 position of benzoxazepinone. As a result, p-cyanophenyl substituted analog 19 exhibited the most potent in vitro anti-necroptotic effect in HT-29 cells (EC50 = 1.7 nM) and superior protection against temperature loss and death in mice in the TZ-induced SIRS model compared to GSK'772. What's more, in vivo analysis of the levels of inflammatory factors in mice also revealed that compound 19 had better anti-inflammatory activity than GSK'772.


Asunto(s)
Inflamación , Proteína Serina-Treonina Quinasas de Interacción con Receptores , Síndrome de Respuesta Inflamatoria Sistémica , Animales , Humanos , Ratones , Apoptosis , Células HT29 , Inflamación/metabolismo , Necrosis , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Quinasas/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/antagonistas & inhibidores , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Síndrome de Respuesta Inflamatoria Sistémica/inducido químicamente , Síndrome de Respuesta Inflamatoria Sistémica/tratamiento farmacológico , Síndrome de Respuesta Inflamatoria Sistémica/metabolismo , Azepinas/química , Azepinas/farmacología
7.
Molecules ; 29(2)2024 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-38257210

RESUMEN

MASM, a structurally modified derivative of matrine, exhibits superior efficacy in reducing inflammation and liver injury in rats when compared to matrine. This study aims to investigate the pharmacokinetic profile and acute toxicity of MASM. Pharmacokinetic results revealed that MASM exhibited rapid absorption, with a Tmax ranging from 0.21 ± 0.04 h to 1.31 ± 0.53 h, and was eliminated slowly, with a t1/2 of approximately 10 h regardless of the route of administration (intravenous, intraperitoneal, or intragastric). The absolute intragastric bioavailability of MASM in rats was determined to be 44.50%, which was significantly higher than that of matrine (18.5%). MASM was detected in all rat tissues including the brain, and through the utilization of stable isotope-labeled compounds and standard references, ten metabolites of MASM, namely sophocarpine, oxysophocarpine, and oxymatrine, were tentatively identified. The LD50 of MASM in mice was determined to be 94.25 mg/kg, surpassing that of matrine (83.21 mg/kg) based on acute toxicity results. Histopathological and biochemical analysis indicated no significant alterations in the primary organs of the low- to medium-dosage groups of MASM. These findings provide valuable insights into the efficacy and toxicity profile of MASM.


Asunto(s)
Antracenos , Matrinas , Tionas , Ratones , Ratas , Animales , Radioisótopos de Carbono , Distribución Tisular
8.
Food Funct ; 15(1): 158-171, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38086660

RESUMEN

Smoking is the primary risk factor for developing lung cancer. Chemoprevention could be a promising strategy to reduce the incidence and mortality rates of lung cancer. Recently, we reported that A/J mice exposed to tobacco smoke carcinogens displayed the reshaping of gut microbiota. Additionally, garlic oil was found to effectively inhibit the carcinogenic effects of tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) in lung tumorigenesis. Diallyl trisulfide (DATS), which is the predominant compound in garlic oil, exhibits various biological activities. To further explore the chemopreventive action and potential mechanism of DATS on lung tumorigenesis, we established a lung adenocarcinoma model in A/J mice stimulated by NNK. Subsequently, we employed multi-omics combined molecular biology technologies to clarify the mechanism. The results indicated that DATS significantly decreased the number of lung tumors in NNK induced A/J mice. Interestingly, we discovered that DATS could modulate gut microbiota, particularly increasing the abundance of F. rodentium, which has inhibitory effects on tumor growth. Mechanistically, DATS could activate the PPARγ pathway, leading to the negative regulation of the NF-κB signaling pathway and subsequent suppression of NF-κB-mediated inflammatory factors. Collectively, these findings provide support for DATS as a potential novel chemopreventive agent for tobacco carcinogen-induced lung cancer.


Asunto(s)
Microbioma Gastrointestinal , Neoplasias Pulmonares , Nitrosaminas , Ratones , Animales , Neoplasias Pulmonares/inducido químicamente , Neoplasias Pulmonares/prevención & control , Neoplasias Pulmonares/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , PPAR gamma/metabolismo , Nitrosaminas/toxicidad , Carcinógenos/farmacología , Pulmón , Ratones Endogámicos , Carcinogénesis/metabolismo
9.
J Agric Food Chem ; 71(46): 17763-17774, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37956253

RESUMEN

Chemoprevention is a potential strategy to reduce lung cancer incidence and death. Recently, we reported that garlic oil significantly inhibits 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced lung tumorigenesis. Diallyl disulfide (DADS) is a bioactive ingredient in garlic. Our goal was to examine the chemopreventive effectiveness and mechanism of DADS on NNK-triggered lung cancer in vivo and in vitro in the current investigation. The results indicated that DADS significantly reduced the number of lung nodules in the NNK-induced A/J mice. Consistent with the in vivo results, DADS markedly inhibited NNK-induced decrease of MRC-5 cells' viability. Mechanistically, DADS could promote Nrf2 dissociated from the Keap1-Nrf2 complex and accelerate Nrf2 nuclear translocation, which in turn upregulates its downstream target genes. Besides, DADS further inhibited the NF-κB signaling cascade, thus reducing the accumulation of inflammatory factors. Collectively, these discoveries supported the potential of DADS as a novel candidate for the chemoprevention of tobacco-carcinogen-induced lung cancer.


Asunto(s)
Neoplasias Pulmonares , Nitrosaminas , Productos de Tabaco , Ratones , Animales , Carcinógenos/toxicidad , FN-kappa B/genética , FN-kappa B/metabolismo , Antioxidantes/efectos adversos , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch , Nitrosaminas/toxicidad , Pulmón/metabolismo , Carcinogénesis , Neoplasias Pulmonares/inducido químicamente , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/prevención & control
10.
J Med Chem ; 66(22): 15288-15308, 2023 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-37917221

RESUMEN

Necroptosis, a regulated cell death form, is a critical contributor in various inflammatory diseases. We previously identified a phenoxybenzothiazole SZM-610 as a RIPK1 and RIPK3 necroptosis inhibitor. We conducted extensive studies to investigate different chemical components' effects on antinecroptosis activity and RIPK1/3 activity. This study focused on replacing the linker in phenoxybenzothiazoles to assess its impact. Remarkably, compound 10, bearing a novel 3,2'-phenylbenzothiazole scaffold, exhibited fourfold more potent nanomolar activity than SZM-610. Unlike SZM-610, this compound inhibited RIPK1 (Kd = 17 nM) and eliminated RIPK3 inhibition at 5000 nM. Various linkages confirmed the 3,2'-phenylbenzothiazole superior potency. Moreover, this compound specifically inhibited necroptosis by inhibiting RIPK1, RIPK3, and MLKL phosphorylation. In a TNF-induced inflammatory model, it dose-dependently (1.25-5 mg/kg) protected mice from hypothermia and death, surpassing SZM-610's effectiveness. These findings highlight 3,2'-phenylbenzothiazole as a promising lead structure for developing drugs targeting necroptosis-related diseases.


Asunto(s)
Necroptosis , Proteínas Quinasas , Ratones , Animales , Proteínas Quinasas/metabolismo , Fosforilación , Proteína Serina-Treonina Quinasas de Interacción con Receptores , Tiazoles/farmacología , Tiazoles/uso terapéutico , Apoptosis
11.
Bioorg Med Chem Lett ; 95: 129468, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37689216

RESUMEN

One effective strategy for treating atherosclerosis is to inhibit the injury of vascular endothelial cells (VECs) induced by oxidized low-density lipoprotein (oxLDL) and high glucose (HG). This study synthesized and evaluated a series of novel Nrf2 activators derived from the marine natural product phidianidine for their ability to protect human umbilical VECs against oxLDL- and HG-induced injury. The results of in vitro bioassays demonstrated that compound D-36 was the most promising Nrf2 activator, effectively inhibiting the apoptosis of HUVECs induced by oxLDL and HG. Furthermore, Nrf2 knockdown experiments confirmed that compound D-36 protected against oxLDL- and HG-induced apoptosis in HUVECs by activating the Nrf2 pathway. These findings provide important insights into a new chemotype of marine-derived Nrf2 activators that could potentially be optimized to develop effective anti-atherosclerosis agents.

12.
ACS Chem Neurosci ; 14(17): 2995-3012, 2023 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-37579022

RESUMEN

Ferroptosis is increasingly being recognized as a key element in the pathogenesis of diverse diseases. Recent studies have highlighted the intricate links between iron metabolism and neurodegenerative disorders. Emerging evidence suggests that iron homeostasis, oxidative stress, and neuroinflammation all contribute to the regulation of both ferroptosis and neuronal health. However, the precise molecular mechanisms underlying the involvement of ferroptosis in the pathological processes of neurodegeneration and its impact on neuronal dysfunction remain incompletely understood. In our Review, we provide a comprehensive analysis and summary of the potential molecular mechanisms underlying ferroptosis in neurodegenerative diseases, aiming to elucidate the disease progression of neurodegeneration. Additionally, we discuss potential therapeutic agents that modulate ferroptosis with the goal of identifying novel drug molecules for the treatment of neurodegenerative disorders.


Asunto(s)
Ferroptosis , Enfermedades Neurodegenerativas , Muerte Celular Regulada , Humanos , Progresión de la Enfermedad , Hierro
13.
Eur J Med Chem ; 257: 115540, 2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37301075

RESUMEN

Colorectal cancer (CRC) is a common malignancy of the gastrointestinal tract with high morbidity and mortality. Our previous studies have demonstrated that indole-chalcone-based compounds targeting tubulin displayed potential cytotoxicity to CRC cells. Herein, three new series of derivatives were systematically designed and synthesized to explore their structure-activity relationship (SAR) against CRC based on prior research. Among them, a representative fluorine-containing analog (FC116) exerted superior efficacy on HCT116 (IC50 = 4.52 nM) and CT26 (IC50 = 18.69 nM) cell lines, and HCT116-xenograft mice with tumor growth inhibition rate of 65.96% (3 mg/kg). Of note, FC116 could also suppress the growth of organoid models (IC50 = 1.8-2.5 nM) and showed adenoma number inhibition rate of 76.25% at the dose of 3 mg/kg in APCmin/+ mice. In terms of mechanism, FC116 could induce endoplasmic reticulum (ER) stress to produce excess reactive oxygen species (ROS), leading to mitochondrial damage to promote the apoptosis of CRC cells by targeting microtubules. Our results support that indole-chalcone compounds are promising tubulin inhibitors and highlight the potential of FC116 to combat CRC.


Asunto(s)
Chalcona , Chalconas , Neoplasias Colorrectales , Humanos , Animales , Ratones , Tubulina (Proteína)/metabolismo , Chalcona/farmacología , Chalcona/química , Colchicina/farmacología , Chalconas/farmacología , Chalconas/uso terapéutico , Chalconas/química , Ensayos de Selección de Medicamentos Antitumorales , Proliferación Celular , Sitios de Unión , Indoles/farmacología , Indoles/química , Neoplasias Colorrectales/tratamiento farmacológico
14.
Bioorg Chem ; 137: 106647, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37270986

RESUMEN

Receptor-interacting protein kinase 1 (RIPK1) and RIPK3, two imperative targets of the necroptosis pathway, are associated with various inflammatory-related diseases. Regulating kinase activity with inhibitors has been confirmed as a promising strategy for inflammation treatment. However, most of the reported type I and II kinase inhibitors of RIPK1 and RIPK3, including benzothiazole compounds discovered by our group, have selective limitations due to interaction with ATP-binding pockets. Fortunately, a solvent exposure E0 region of the kinase domain, which extends into the linker region, has been reported to be related to the potency and selectivity of inhibitors. Hence, based on our previous study, a series of benzothiazole necroptosis inhibitors with chiral substitutions in the linker region were developed to investigate RIPK1/3 inhibitory potency. The results showed a 2-to 6-fold increase in anti-necroptotic activity for these chiral compounds. The improved selectivity on RIPK1 or RIPK3 was demonstrated on different derivatives. Predicted binding conformations of enantiomers with RIPK1/3 gave an explanation for their activity differences, guiding further rational design of chiral necroptosis inhibitors.


Asunto(s)
Necroptosis , Proteínas Quinasas , Proteínas Quinasas/metabolismo , Fosforilación , Benzotiazoles/farmacología , Apoptosis
15.
Redox Biol ; 64: 102793, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37385075

RESUMEN

The Keap1-Nrf2 pathway has been established as a therapeutic target for Alzheimer's disease (AD). Directly inhibiting the protein-protein interaction (PPI) between Keap1 and Nrf2 has been reported as an effective strategy for treating AD. Our group has validated this in an AD mouse model for the first time using the inhibitor 1,4-diaminonaphthalene NXPZ-2 with high concentrations. In the present study, we reported a new phosphodiester containing diaminonaphthalene compound, POZL, designed to target the PPI interface using a structure-based design strategy to combat oxidative stress in AD pathogenesis. Our crystallographic verification confirms that POZL shows potent Keap1-Nrf2 inhibition. Remarkably, POZL showed its high in vivo anti-AD efficacy at a much lower dosage compared to NXPZ-2 in the transgenic APP/PS1 AD mouse model. POZL treatment in the transgenic mice could effectively ameliorate learning and memory dysfunction by promoting the Nrf2 nuclear translocation. As a result, the oxidative stress and AD biomarker expression such as BACE1 and hyperphosphorylation of Tau were significantly reduced, and the synaptic function was recovered. HE and Nissl staining confirmed that POZL improved brain tissue pathological changes by enhancing neuron quantity and function. Furthermore, it was confirmed that POZL could effectively reverse Aß-caused synaptic damage by activating Nrf2 in primary cultured cortical neurons. Collectively, our findings demonstrated that the phosphodiester diaminonaphthalene Keap1-Nrf2 PPI inhibitor could be regarded as a promising preclinical candidate of AD.


Asunto(s)
Enfermedad de Alzheimer , Ratones , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Ácido Aspártico Endopeptidasas/metabolismo , Ratones Transgénicos , Estrés Oxidativo
16.
Inflammation ; 46(5): 1796-1809, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37227549

RESUMEN

Excessive inflammatory response is a critical pathogenic factor for the tissue damage and organ failure caused by systemic inflammatory response syndrome (SIRS) and sepsis. In recent years, drugs targeting RIPK1 have proved to be an effective anti-inflammatory strategy. In this study, we identified a novel anti-inflammatory lead compound 4-155 that selectively targets RIPK1. Compound 4-155 significantly inhibited necroptosis of cells, and its activity is about 10 times higher than the widely studied Nec-1 s. The anti-necroptosis effect of 4-155 was mainly dependent on the inhibition of phosphorylation of RIPK1, RIPK3, and MLKL. In addition, we demonstrated that 4-155 specifically binds RIPK1 by drug affinity responsive target stability (DARTS), immunoprecipitation, kinase assay, and immunofluorescence microscopy. More importantly, compound 4-155 could inhibit excessive inflammation in vivo by blocking RIPK1-mediated necroptosis and not influence the activation of MAPK and NF-κB, which is more potential for the subsequent drug development. Compound 4-155 effectively protected mice from TNF-induced SIRS and sepsis. Using different doses, we found that 6 mg/kg oral administration of compound 4-155 could increase the survival rate of SIRS mice from 0 to 90%, and the anti-inflammatory effect of 4-155 in vivo was significantly stronger than Nec-1 s at the same dose. Consistently, 4-155 significantly reduced serum levels of pro-inflammatory cytokines (TNF-α and IL-6) and protected the liver and kidney from excessive inflammatory damages. Taken together, our results suggested that compound 4-155 could inhibit excessive inflammation in vivo by blocking RIPK1-mediated necroptosis, providing a new lead compound for the treatment of SIRS and sepsis.


Asunto(s)
Sepsis , Síndrome de Respuesta Inflamatoria Sistémica , Ratones , Animales , Síndrome de Respuesta Inflamatoria Sistémica/metabolismo , Sepsis/tratamiento farmacológico , Inflamación/metabolismo , Fosforilación , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Apoptosis
17.
Br J Pharmacol ; 180(20): 2641-2660, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37248964

RESUMEN

BACKGROUND AND PURPOSE: Necroptosis plays an essential role in acute kidney injury and is mediated by receptor-interacting protein kinase 1 (RIPK1), receptor-interacting protein kinase 3 (RIPK3), and mixed lineage kinase domain-like pseudokinase (MLKL). A novel RIPK3 inhibitor, compound 42 (Cpd-42) alleviates the systemic inflammatory response. The current study was designed to investigate whether Cpd-42 exhibits protective effects on acute kidney injury and reveal the underlying mechanisms. EXPERIMENTAL APPROACH: The effects of Cpd-42 were determined in vivo through cisplatin- and ischaemia/reperfusion (I/R)-induced acute kidney injury and in vitro through cisplatin- and hypoxia/re-oxygenation (H/R)-induced cell damage. Transmission electron microscopy and periodic acid-Schiff staining were used to identify renal pathology. Cellular thermal shift assay and RIPK3-knockout mouse renal tubule epithelial cells were used to explore the relationship between Cpd-42 and RIPK3. Molecular docking and site-directed mutagenesis were used to determine the binding site of RIPK3 with Cpd-42. KEY RESULTS: Cpd-42 reduced human proximal tubule epithelial cell line (HK-2) cell damage, necroptosis and inflammatory responses in vitro. Furthermore, in vivo, cisplatin- and I/R-induced acute kidney injury was alleviated by Cpd-42 treatment. Cpd-42 inhibited necroptosis by interacting with two key hydrogen bonds of RIPK3 at Thr94 and Ser146, which further blocked the phosphorylation of RIPK3 and mitigated acute kidney injury. CONCLUSION AND IMPLICATIONS: Acting as a novel RIPK3 inhibitor, Cpd-42 reduced kidney damage, inflammatory response and necroptosis in acute kidney injury by binding to sites Thr94 and Ser146 on RIPK3. Cpd-42 could be a promising treatment for acute kidney injury.


Asunto(s)
Lesión Renal Aguda , Cisplatino , Ratones , Animales , Humanos , Cisplatino/farmacología , Necroptosis , Simulación del Acoplamiento Molecular , Lesión Renal Aguda/metabolismo , Proteínas Quinasas/metabolismo , Ratones Noqueados , Apoptosis , Proteína Serina-Treonina Quinasas de Interacción con Receptores
18.
J Med Chem ; 66(12): 8267-8280, 2023 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-37257073

RESUMEN

Blocking the Kelch-like epichlorohydrin-related protein 1 (Keap1)-nuclear factor-erythroid 2 related factor 2 (Nrf2) pathway is a promising strategy to alleviate acute lung injury (ALI). A naphthalensulfonamide NXPZ-2, targeting Keap1-Nrf2 interaction to release Nrf2, was confirmed to exhibit significant anti-inflammatory activities, however, accompanying nonideal solubility and PK profiles. To further improve the properties, twenty-nine novel naphthalenesulfonamide derivatives were designed by a fragment-based strategy. Among them, compound 10u with a (R)-azetidine group displayed the highest PPI inhibitory activity (KD2 = 0.22 µM). The hydrochloric acid form of 10u exhibited a 9-fold improvement on water solubility (S = 484 µg/mL, pH = 7.0) compared to NXPZ-2 (S = 55 µg/mL, pH = 7.0). It could significantly reduce LPS-induced lung oxidative damages and inflammations in vitro and in vivo. Furthermore, a satisfactory pharmacokinetic property was revealed. In conclusion, the novel azetidine-containing naphthalenesulfonamide represents a promising drug candidate for Keap1-targeting ALI treatment.


Asunto(s)
Lesión Pulmonar Aguda , Factor 2 Relacionado con NF-E2 , Humanos , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Epiclorhidrina , Lesión Pulmonar Aguda/tratamiento farmacológico
19.
Bioorg Chem ; 135: 106531, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37043882

RESUMEN

Advanced metastatic colorectal cancers (CRCs) are regarded as a challenge in clinical cancer therapy. Our previous studies have demonstrated that a representative fluoro-substituted indole-chalcone (FC116), was obtained to display highly potent activity against CRC using multiple in vitro and in vivo mouse models by targeting microtubules. However, several problems, such as low dose tolerance and highly toxic to the brain and colon, low solubility unsuitable for intravenous (i.v.) administration, are still existed and limit further development. Herein, we developed two series of FC116 derivatives on the 4-methoxyphenyl group by a structure-based design strategy. Among them, FC11619 with an amino terminus maintained the in vitro cytotoxicity against HCT-116 CRC in a low nanomolar range. This compound could induce G2/M phase arrest via regulating cyclin B1 expression, produce excess reactive oxygen species (ROS), and target tubulin in CRC cells. In vivo, FC11619 significantly suppressed tumor growth, achieving 65.3 and 73.4 % at doses of 5 and 10 mg/kg/d (i.v., 21 d), which were much better than 54.1% of Taxol at 7 mg/kg. In addition, this compound showed better in vivo tolerance compared to that of FC116 (only 3 mg/kg tolerance, intraperitoneal, i.p.), and no major organ-related toxicity, especially no apparent degenerated neurons, intestinal obstruction in clinical Taxol standard therapy. Taken together, the 4-amino-substitutedphenyl indole-chalcones represent lead compounds as chemotherapy of CRC for further drug development in this field.


Asunto(s)
Antineoplásicos , Chalcona , Chalconas , Neoplasias Colorrectales , Animales , Ratones , Chalcona/farmacología , Chalcona/uso terapéutico , Chalconas/farmacología , Chalconas/uso terapéutico , Chalconas/química , Apoptosis , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Antineoplásicos/química , Neoplasias Colorrectales/tratamiento farmacológico , Paclitaxel/farmacología , Indoles/farmacología , Indoles/uso terapéutico , Indoles/química , Proliferación Celular , Línea Celular Tumoral , Estructura Molecular , Relación Estructura-Actividad
20.
Med Res Rev ; 43(6): 1974-2024, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37119044

RESUMEN

Necroptosis is a highly regulated cell death (RCD) form in various inflammatory diseases. Receptor-interacting protein kinase 1 (RIPK1) and RIPK3 are involved in the pathway. Targeting the kinase domains of RIPK1 and/or 3 is a drug design strategy for related diseases. It is generally accepted that essential reoccurring features are observed across the human kinase domains, including RIPK1 and RIPK3. They present common N- and C-terminal domains that are built up mostly by α-helices and ß-sheets, respectively. The current RIPK1/3 kinase inhibitors mainly interact with the kinase catalytic cleft. This article aims to present an in-depth profiling for ligand-kinase interactions in the crucial cleft areas by carefully aligning the kinase-ligand cocrystal complexes or molecular docking models. The similarity and differential structural segments of ligands are systematically evaluated. New insights on the adaption of the conserved and selective kinase domains to the diversity of chemical scaffolds are also provided. In a word, our analysis can provide a better structural requirement for RIPK1 and RIPK3 inhibition and a guide for inhibitor discovery and optimization of their potency and selectivity.


Asunto(s)
Apoptosis , Necroptosis , Humanos , Simulación del Acoplamiento Molecular , Ligandos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...