Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 18(37): 25795-25812, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39226614

RESUMEN

The activation of cellular ferroptosis is promising in tumor therapy. However, ferroptosis is parallelly inhibited by antiferroptotic substances, including glutathione peroxidase 4 (GPX4), dihydroorotate dehydrogenase (DHODH), and ferroptosis suppressor protein 1 (FSP1). Thus, it is highly desirable, yet challenging, to simultaneously suppress these three antiferroptotic substances for activating ferroptosis. Here, we rationally designed a hollow iron-doped SiO2-based nanozyme (FeSHS) loaded with brequinar (BQR) and lificiguat (YC-1), named FeSHS/BQR/YC-1-PEG, for tumor ferroptosis activation. FeSHS were developed through the continuous etching of SiO2 nanoparticles by iron ions, which exhibit pH/glutathione-responsive biodegradability, along with mimicking the activities of peroxidase, glutathione oxidase, and NAD(P)H oxidase. Specifically, glutathione depletion and NAD(P)H oxidation by FeSHS will suppress the expression of GPX4 and inhibit FSP1 by disrupting the NAD(P)H/FSP1/ubiquinone axis. In addition, the released BQR can suppress the expression of DHODH. Meanwhile, YC-1 is able to increase the cellular polyunsaturated fatty acids (PUFAs) by destroying the HIF-1α/lipid droplet axis. The elevation of levels of iron and PUFAs while simultaneously disrupting the GPX4/DHODH/FSP1 inhibitory pathways by our designed nanoplatform displayed high therapeutic efficacy both in vitro and in vivo. This work elucidates rationally designing smart nanoplatforms for ferroptosis activation and future tumor treatments.


Asunto(s)
Neoplasias de la Mama , Ferroptosis , Hierro , Dióxido de Silicio , Dióxido de Silicio/química , Ferroptosis/efectos de los fármacos , Humanos , Animales , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Ratones , Hierro/química , Hierro/metabolismo , Femenino , Antineoplásicos/farmacología , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Ratones Endogámicos BALB C , Ensayos de Selección de Medicamentos Antitumorales , Nanopartículas/química
2.
J Nanobiotechnology ; 22(1): 474, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39123234

RESUMEN

The activation of ferroptosis presents a versatile strategy for enhancing the antitumor immune responses in cancer therapy. However, developing ferroptosis inducers that combine high biocompatibility and therapeutic efficiency remains challenging. In this study, we propose a novel approach using biological nanoparticles derived from outer membrane vesicles (OMVs) of Escherichia coli for tumor treatment, aiming to activate ferroptosis and stimulate the immune responses. Specifically, we functionalize the OMVs by anchoring them with ferrous ions via electrostatic interactions and loading them with the STING agonist-4, followed by tumor-targeting DSPE-PEG-FA decoration, henceforth referred to as OMV/SaFeFA. The anchoring of ferrous ions endows the OMVs with peroxidase-like activity, capable of inducing cellular lipid peroxidation by catalyzing H2O2 to •OH. Furthermore, OMV/SaFeFA exhibits pH-responsive release of ferrous ions and the agonist, along with tumor-targeting capabilities, enabling tumor-specific therapy while minimizing side effects. Notably, the concurrent activation of the STING pathway and ferroptosis elicits robust antitumor responses in colon tumor-bearing mouse models, leading to exceptional therapeutic efficacy and prolonged survival. Importantly, no acute toxicity was observed in mice receiving OMV/SaFeFA treatments, underscoring its potential for future tumor therapy and clinical translation.


Asunto(s)
Ferroptosis , Ferroptosis/efectos de los fármacos , Animales , Ratones , Línea Celular Tumoral , Membrana Externa Bacteriana , Escherichia coli , Humanos , Nanopartículas/química , Femenino , Ratones Endogámicos BALB C , Peroxidación de Lípido/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/química , Neoplasias del Colon/tratamiento farmacológico , Iones
3.
J Nanobiotechnology ; 22(1): 228, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38715049

RESUMEN

Development of ferroptosis-inducible nanoplatforms with high efficiency and specificity is highly needed and challenging in tumor ferrotherapy. Here, we demonstrate highly effective tumor ferrotherapy using iron (II)-based metal-organic framework (FessMOF) nanoparticles, assembled from disulfide bonds and ferrous ions. The as-prepared FessMOF nanoparticles exhibit peroxidase-like activity and pH/glutathione-dependent degradability, which enables tumor-responsive catalytic therapy and glutathione depletion by the thiol/disulfide exchange to suppress glutathione peroxidase 4, respectively. Upon PEGylation and Actinomycin D (ActD) loading, the resulting FessMOF/ActD-PEG nanoplatform induces marked DNA damage and lipid peroxidation. Concurrently, we found that ActD can inhibit Xc- system and elicit ferritinophagy, which further boosts the ferrotherapeutic efficacy of the FessMOF/ActD-PEG. In vivo experiments demonstrate that our fabricated nanoplatform presents excellent biocompatibility and a high tumor inhibition rate of 91.89%.


Asunto(s)
Daño del ADN , Ferroptosis , Hierro , Estructuras Metalorgánicas , Estructuras Metalorgánicas/química , Estructuras Metalorgánicas/farmacología , Ferroptosis/efectos de los fármacos , Animales , Humanos , Ratones , Daño del ADN/efectos de los fármacos , Hierro/química , Línea Celular Tumoral , Reparación del ADN/efectos de los fármacos , Nanopartículas/química , Neoplasias/tratamiento farmacológico , Ratones Endogámicos BALB C , Femenino
4.
Adv Healthc Mater ; 13(18): e2304522, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38530073

RESUMEN

Cuproptosis is dependent on mitochondrial respiration modulation by targeting lipoylated tricarboxylic acid cycle (TCA) cycle proteins, showing great potential in cancer treatment. However, the specific release of copper ions at mitochondrial is highly needed and still a major challenge to trigger cellular cuproptosis. Herein, a metal-organic framework-based nanoplatform (ZCProP) is designed for mitochondrial-targeted and ATP/pH-responsive Cu2+ and prodigiosin release. The released Cu2+ promotes aggregation of lipoylated protein and loss of Fe-S cluster protein, resulting in cell cuproptosis. In the meanwhile, Cu2+ can concert with prodigiosin to induce mitochondrial dysfunction and DNA damage and enhance cell cuproptosis. Furthermore, this nanoplatform has an ability to deplete glutathione, which not only further promotes cuproptosis but also triggers cell ferroptosis by the suppression of glutathione peroxidase 4, an anti-ferroptosis protein. Collectively, the designed ZCProP nanoplatform can responsively release cargos at mitochondrial and realize a conspicuous therapeutic efficacy through a cuproptosis-mediated concerted effect. Along with its excellent biocompatibility, this nanoplatform may provide a novel therapeutic modality paradigm to boost cancer therapeutic strategies based on cuproptosis.


Asunto(s)
Cobre , Estructuras Metalorgánicas , Mitocondrias , Cobre/química , Cobre/farmacología , Humanos , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Estructuras Metalorgánicas/química , Estructuras Metalorgánicas/farmacología , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , Animales , Ferroptosis/efectos de los fármacos , Línea Celular Tumoral , Ratones
5.
Adv Healthc Mater ; 13(4): e2302537, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37742322

RESUMEN

The colon tumor microenvironment has a high concentration of H2 S and glutathione, which is highly immunosuppressive and adverse to multiple therapeutic methodologies such as ferroptosis. Here, an engineered microbial nanohybrid based on Escherichia coli (E. coli) and Cu2 O nanoparticles to specific colon tumor therapy and immunosuppression reversion is reported. The as-prepared E. coli@Cu2 O hybrid can accumulate in tumor sites upon intravenous injection, and Cu2 O nanoparticles convert to Cux S by consuming the endogenous H2 S, which exhibits strong photothermal conversion at near-infrared II (NIR II) biological window. Furthermore, E. coli@Cu2 O is able to induce cellular ferroptosis and cuproptosis through inactivation of glutathione peroxidase 4 and aggregation of dihydrolipoamide S-acetyltransferase, respectively. Photothermal-enhanced ferroptosis/cuproptosis achieved by E. coli@Cu2 O reverses the immunosuppression of colon tumors by triggering dendritic cell maturation (about 30%) and T cell activation (about 50% CD8+ T cells). Concerted with immune checkpoint blockade, the engineered microbial nanohybrid can inhibit the growth of abscopal tumors upon NIR illumination. Overall, the designed microbial nanohybrid can achieve tumor-specific photothermal-enhanced ferroptosis/cuproptosis and immunosuppression reversion, showing promise in precise tumor therapy in future clinical translation.


Asunto(s)
Neoplasias del Colon , Ferroptosis , Nanopartículas , Neoplasias , Humanos , Linfocitos T CD8-positivos , Escherichia coli , Inmunoterapia , Neoplasias del Colon/terapia , Línea Celular Tumoral , Microambiente Tumoral
6.
Int J Biol Macromol ; 258(Pt 2): 128952, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38143049

RESUMEN

Ferroptosis has drawn great attention to tumor treatments over the past decade. However, how to specifically boost tumoral redox imbalance by simultaneously superimposing iron-mediated reactive oxygen species and undermining antioxidative pathways at the tumor site is still a significant challenge in ferroptosis-based tumor ferrotherapy. In this study, we designed an in situ generable hydrogel that contains paclitaxel/chlorin e6-loaded iron-based metal-organic framework (Fe-MOF) nanoparticles for enhanced breast tumor ferrotherapy by multiplex magnifying redox imbalance. The polysaccharide sodium alginate can crosslink with tumoral calcium ions to generate a hydrogel patch, which promotes the retention of Fe-MOF and therapeutic molecules. The Fe-MOF holds peroxidase/glutathione oxidase mimicking properties, resulting in OH generation via the Fenton reaction and glutathione consumption. Local ultrasound treatment facilitates the release of therapeutics and stimulates the generation of signet oxygen by activating the sonosensitizer chlorin e6. In the meanwhile, the low-dose paclitaxel reduces tumoral pH value by downregulating the glutaminolysis-related gene (SLC7A11) which in turn enhances the catalytic activity of Fe-MOF and inhibits antioxidative pathways, respectively. Both in vivo and in vitro experiments show that our designed hybrid hydrogels can induce significant ferrotherapeutic effects by augmenting the tumoral oxidative stresses.


Asunto(s)
Neoplasias de la Mama , Neoplasias Mamarias Animales , Neoplasias , Animales , Humanos , Femenino , Alginatos , Oxidación-Reducción , Antioxidantes , Hidrogeles , Hierro , Paclitaxel , Línea Celular Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA