Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioorg Med Chem ; 98: 117582, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38171253

RESUMEN

In this study, we explored a concise and mild synthetic route to produce novel C-14 arylcarbamate derivatives of andrographolide, a known anti-inflammatory and anticancer natural product. Upon assessing their anti-cancer efficacy against pancreatic ductal adenocarcinoma (PDAC) cells, some derivatives showed stronger cytotoxicity against PANC-1 cells than andrographolide. In addition, we demonstrated one derivative, compound 3m, effectively reduced the expression of oncogenic p53 mutant proteins (p53R273H and p53R248W), proliferation, and migration in PDAC lines, PANC-1 and MIA PaCa-2. Accordingly, the novel derivative holds promise as an anti-cancer agent against pancreatic cancer. In summary, our study broadens the derivative library of andrographolide and develops an arylcarbamate derivative of andrographolide with promising anticancer activity against PDAC.


Asunto(s)
Carcinoma Ductal Pancreático , Diterpenos , Neoplasias Pancreáticas , Humanos , Proteína p53 Supresora de Tumor/metabolismo , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/patología , Diterpenos/farmacología , Línea Celular Tumoral
2.
J Tradit Complement Med ; 13(4): 379-388, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37396154

RESUMEN

Background and aim: Sepsis causes an uncontrolled systemic response characterized by excessive inflammation and immune suppression, leading to multiple organ failure and death. An effective therapeutic strategy for sepsis-related syndromes is urgently needed. Hypericum sampsonii Hance (HS) is a folk herbal plant used to treat arthritis and dermatitis, but the anti-inflammatory properties of HS and its related compounds have rarely been investigated. In this study, we aimed to explore the anti-inflammatory effects of HS. Experimental procedure: Models of bacterial lipopolysaccharide (LPS)-induced activated macrophages and endotoxemia mice were used, in which the TLR4/NF-κB signaling pathway is upregulated to trigger inflammatory responses. The HS extract (HSE) was delivered into LPS-induced endotoxemia mice via oral administration. Three compounds were purified using column chromatography and preparative thin layer chromatography and were validated by physical and spectroscopic data. Results: HSE suppressed NF-κB activation and proinflammatory molecules (TNF-α, IL-6, iNOS) in LPS-activated RAW 264.7 macrophages. Furthermore, oral administration of HSE (200 mg/kg) to LPS-treated mice improved the survival rate, restored body temperature, decreased TNF-α and IL-6 in serum, and reduced IL-6 expression in bronchoalveolar lavage fluid (BALF). In lung tissues, HSE reduced LPS-induced leukocyte infiltration and the expression of proinflammatory molecules (TNF-α, IL-6, iNOS, CCL4 and CCL5). Three pure compounds isolated from HSE, including 2,4,6-trihydroxybenzophenone-4-O-geranyl ether, 1-hydroxy-7 methoxyxanthone and euxanthone, were demonstrated to exhibit anti-inflammatory activities in LPS-stimulated RAW 264.7 macrophages. Conclusion: The present study demonstrated the anti-inflammatory effects of HS in vitro and in vivo. Further clinical studies of HS in human sepsis are warranted.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...