Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Appl Environ Microbiol ; 83(10)2017 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-28283527

RESUMEN

To better understand the impacts of Corexit 9500 on the structure and activity levels of hydrocarbon-degrading microbial communities, we analyzed next-generation 16S rRNA gene sequencing libraries of hydrocarbon enrichments grown at 5 and 25°C using both DNA and RNA extracts as the sequencing templates. Oil biodegradation patterns in both 5 and 25°C enrichments were consistent with those reported in the literature (i.e., aliphatics were degraded faster than aromatics). Slight increases in biodegradation were observed in the presence of Corexit at both temperatures. Differences in community structure were observed between treatment conditions in the DNA-based libraries. The 25°C consortia were dominated by Vibrio, Idiomarina, Marinobacter, Alcanivorax, and Thalassospira species, while the 5°C consortia were dominated by several species of the genera Flavobacterium, Alcanivorax, and Oleispira Most of these genera have been linked to hydrocarbon degradation and have been observed after oil spills. Colwellia and Cycloclasticus, known aromatic degraders, were also found in these enrichments. The addition of Corexit did not have an effect on the active bacterial community structure of the 5°C consortia, while at 25°C, a decrease in the relative abundance of Marinobacter was observed. At 25°C, Thalassospira, Marinobacter, and Idiomarina were present at higher relative abundances in the RNA than DNA libraries, suggesting that they were active in degradation. Similarly, Oleispira was greatly stimulated by the addition of oil at 5°C.IMPORTANCE While dispersants such as Corexit 9500 can be used to treat oil spills, there is still debate on the effectiveness on enhancing oil biodegradation and its potential toxic effect on oil-degrading microbial communities. The results of this study provide some insights on the microbial dynamics of hydrocarbon-degrading bacterial populations in the presence of Corexit 9500. Operational taxonomic unit (OTU) analyses indicated that several OTUs were inhibited by the addition of Corexit. Conversely, a number of OTUs were stimulated by the addition of the dispersant, many of which were identified as known hydrocarbon-degrading bacteria. The results highlight the value of using RNA-based methods to further understand the impact of dispersant on the overall activity of different hydrocarbon-degrading bacterial groups.


Asunto(s)
Bacterias/efectos de los fármacos , Bacterias/metabolismo , Lípidos/farmacología , Bacterias/clasificación , Bacterias/genética , Biodegradación Ambiental , Hidrocarburos/metabolismo , Petróleo/metabolismo , Contaminación por Petróleo/análisis , Filogenia
2.
Chemosphere ; 144: 767-74, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26414737

RESUMEN

This article reports biodegradation rates for a commercial dispersant, JD-2000, South Louisiana crude oil (SLC) alone, and SLC dispersed with JD-2000 at 5 and 25 °C. Results from the biodegradation experiments revealed that Component X, a chemical marker for JD-2000, rapidly degraded at both temperatures. The application of JD-2000 decreased by half the overall biodegradation rate of aliphatic compounds at 25 °C. At 5 °C, a residual fraction consisting of iso- and n-alkanes (C29-C35) persisted after 56 d. The combination of dispersant and higher temperature resulted in faster removal rates for 2- and 3-ring polycyclic aromatic hydrocarbons. When compared with Corexit 9500, our results suggest that the chemistry of the surfactant (or surfactants) in JD-2000 might have favored oil dissolution (substrate transport to the aqueous phase) as an uptake mechanism over adhesion, which requires direct contact of the biomass with the oil.


Asunto(s)
Petróleo/análisis , Tensoactivos/farmacología , Temperatura , Alcanos/aislamiento & purificación , Alcanos/metabolismo , Biodegradación Ambiental/efectos de los fármacos , Louisiana , Hidrocarburos Policíclicos Aromáticos/aislamiento & purificación , Hidrocarburos Policíclicos Aromáticos/metabolismo , Tensoactivos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA