Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
IEEE J Biomed Health Inform ; 27(10): 4816-4827, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37796719

RESUMEN

The automatic and dependable identification of colonic disease subtypes by colonoscopy is crucial. Once successful, it will facilitate clinically more in-depth disease staging analysis and the formulation of more tailored treatment plans. However, inter-class confusion and brightness imbalance are major obstacles to colon disease subtyping. Notably, the Fourier-based image spectrum, with its distinctive frequency features and brightness insensitivity, offers a potential solution. To effectively leverage its advantages to address the existing challenges, this article proposes a framework capable of thorough learning in the frequency domain based on four core designs: the position consistency module, the high-frequency self-supervised module, the complex number arithmetic model, and the feature anti-aliasing module. The position consistency module enables the generation of spectra that preserve local and positional information while compressing the spectral data range to improve training stability. Through band masking and supervision, the high-frequency autoencoder module guides the network to learn useful frequency features selectively. The proposed complex number arithmetic model allows direct spectral training while avoiding the loss of phase information caused by current general-purpose real-valued operations. The feature anti-aliasing module embeds filters in the model to prevent spectral aliasing caused by down-sampling and improve performance. Experiments are performed on the collected five-class dataset, which contains 4591 colorectal endoscopic images. The outcomes show that our proposed method produces state-of-the-art results with an accuracy rate of 89.82%.


Asunto(s)
Enfermedades del Colon , Colonoscopía , Humanos , Enfermedades del Colon/diagnóstico por imagen
2.
Med Image Anal ; 87: 102832, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37148864

RESUMEN

Colorectal cancer is one of the malignant tumors with the highest mortality due to the lack of obvious early symptoms. It is usually in the advanced stage when it is discovered. Thus the automatic and accurate classification of early colon lesions is of great significance for clinically estimating the status of colon lesions and formulating appropriate diagnostic programs. However, it is challenging to classify full-stage colon lesions due to the large inter-class similarities and intra-class differences of the images. In this work, we propose a novel dual-branch lesion-aware neural network (DLGNet) to classify intestinal lesions by exploring the intrinsic relationship between diseases, composed of four modules: lesion location module, dual-branch classification module, attention guidance module, and inter-class Gaussian loss function. Specifically, the elaborate dual-branch module integrates the original image and the lesion patch obtained by the lesion localization module to explore and interact with lesion-specific features from a global and local perspective. Also, the feature-guided module guides the model to pay attention to the disease-specific features by learning remote dependencies through spatial and channel attention after network feature learning. Finally, the inter-class Gaussian loss function is proposed, which assumes that each feature extracted by the network is an independent Gaussian distribution, and the inter-class clustering is more compact, thereby improving the discriminative ability of the network. The extensive experiments on the collected 2568 colonoscopy images have an average accuracy of 91.50%, and the proposed method surpasses the state-of-the-art methods. This study is the first time that colon lesions are classified at each stage and achieves promising colon disease classification performance. To motivate the community, we have made our code publicly available via https://github.com/soleilssss/DLGNet.


Asunto(s)
Colon , Colonoscopía , Humanos , Distribución Normal , Colon/diagnóstico por imagen , Aprendizaje , Redes Neurales de la Computación
3.
World J Gastroenterol ; 28(22): 2457-2467, 2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35979257

RESUMEN

BACKGROUND: A convolutional neural network (CNN) is a deep learning algorithm based on the principle of human brain visual cortex processing and image recognition. AIM: To automatically identify the invasion depth and origin of esophageal lesions based on a CNN. METHODS: A total of 1670 white-light images were used to train and validate the CNN system. The method proposed in this paper included the following two parts: (1) Location module, an object detection network, locating the classified main image feature regions of the image for subsequent classification tasks; and (2) Classification module, a traditional classification CNN, classifying the images cut out by the object detection network. RESULTS: The CNN system proposed in this study achieved an overall accuracy of 82.49%, sensitivity of 80.23%, and specificity of 90.56%. In this study, after follow-up pathology, 726 patients were compared for endoscopic pathology. The misdiagnosis rate of endoscopic diagnosis in the lesion invasion range was approximately 9.5%; 41 patients showed no lesion invasion to the muscularis propria, but 36 of them pathologically showed invasion to the superficial muscularis propria. The patients with invasion of the tunica adventitia were all treated by surgery with an accuracy rate of 100%. For the examination of submucosal lesions, the accuracy of endoscopic ultrasonography (EUS) was approximately 99.3%. Results of this study showed that EUS had a high accuracy rate for the origin of submucosal lesions, whereas the misdiagnosis rate was slightly high in the evaluation of the invasion scope of lesions. Misdiagnosis could be due to different operating and diagnostic levels of endoscopists, unclear ultrasound probes, and unclear lesions. CONCLUSION: This study is the first to recognize esophageal EUS images through deep learning, which can automatically identify the invasion depth and lesion origin of submucosal tumors and classify such tumors, thereby achieving good accuracy. In future studies, this method can provide guidance and help to clinical endoscopists.


Asunto(s)
Endosonografía , Redes Neurales de la Computación , Algoritmos , Endoscopía , Endosonografía/métodos , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA