Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancer Lett ; 596: 216961, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38823764

RESUMEN

Extracellular vesicles are essential for intercellular communication and are involved in tumor progression. Inhibiting the direct release of extracellular vesicles seems to be an effective strategy in inhibiting tumor progression, but lacks of investigation. Here, we report a natural flavonoid compound, apigenin, could significantly inhibit the growth of hepatocellular carcinoma by preventing microvesicle secretion. Mechanistically, apigenin primarily targets the guanine nucleotide exchange factor ARHGEF1, inhibiting the activity of small G protein Cdc42, which is essential in regulating the release of microvesicles from tumor cells. In turn, this inhibits tumor angiogenesis related to VEGF90K transported on microvesicles, ultimately impeding tumor progression. Collectively, these findings highlight the therapeutic potential of apigenin and shed light on its anticancer mechanisms through inhibiting microvesicle biogenesis, providing a solid foundation for the refinement and practical application of apigenin.

2.
Heliyon ; 8(11): e11503, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36411886

RESUMEN

Metformin is a drug that has been applied in clinical use for many years for the treatment of type 2 diabetes mellitus (T2DM). It achieves its function through multiple targets and modulation of multiple signaling pathways. To date, the mechanism of the action of metformin is still not fully understood. Along with glycemic control, metformin has shown good inhibitory effects on the development of many tumors. Here, we elucidated that plasma exosomal microRNA-122-5p (miR-122) is closely related to the mechanism of metformin. MiR-122 regulates glycogen-glucose metabolism in hepatocytes or hepatocellular carcinoma cells (HCC) by inhibiting the phosphorylation of AMPK. Since miR-122 and metformin regulate glucose metabolism homeostasis through similar mechanisms, miR-122 can antagonize the effects of metformin. MiR-122 expression increases the sensitivity of hepatocytes or HCC to metformin. Conversely, decreased expression of miR-122 results in hepatocyte insensitivity to metformin. Therefore, significantly elevated levels of miR-122 in plasma exosomes of hepatocellular carcinoma patients could enhance their sensitivity to metformin. The results of the present study revealed a key regulatory role of plasma exosomal miR-122 on the molecular mechanism of metformin. The regulation of key molecules of related signaling pathways by miR-122 may lead to similar glycemic lowering and tumor suppression therapeutic effects as metformin. This provides new ideas for the development of new therapeutic strategies for hepatocellular carcinoma based on the mechanism of miR-122 and metformin.

3.
J Extracell Vesicles ; 10(3): e12051, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33473262

RESUMEN

Tumour-derived microvesicles (MVs) serve as critical mediators of cell-to-cell communication in the tumour microenvironment. So far, the underlying mechanisms of MV biogenesis, especially how key tumorigenesis signals such as abnormal EGF signalling regulates MV release, remain unclear. Here, we set out to establish reliable readouts for MV biogenesis and then explore the molecular mechanisms that regulate MV generation. We found that Rho family small G protein Cdc42 is a convergent node of multiple regulatory signals that occur in MV biogenesis. The binding of activated GTP-bound Cdc42 and its downstream effector, Ras GTPase-activating-like protein 1 (IQGAP1), is required for MV shedding. Activated Cdc42 maintains sustained EGF signalling by inhibiting the internalization of cell surface receptors, including EGFR and the VEGF oligomer, VEGF90K, and then facilitates MV release. Subsequently, we further demonstrated that blocking these signalling pathways using the corresponding mutants effectively reduced MV shedding and significantly inhibited MV-promoted in vivo tumour angiogenesis. These findings reveal a complex regulation of MV shedding by tumour cells, shedding light on the regulatory mechanism of MV biogenesis, and potentially contributing to strategies that target MVs in cancer therapy.


Asunto(s)
Vesículas Extracelulares/metabolismo , Neoplasias/metabolismo , Microambiente Tumoral , Proteína de Unión al GTP cdc42/metabolismo , Células 3T3 , Animales , Comunicación Celular , Línea Celular , Línea Celular Tumoral , Micropartículas Derivadas de Células/metabolismo , Humanos , Ratones , Neovascularización Patológica/metabolismo , Transducción de Señal , Proteínas Activadoras de ras GTPasa/metabolismo
4.
PLoS One ; 15(4): e0231466, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32298294

RESUMEN

DaHuangWan (DHW) is a traditional herbal medicine used by Mongolian to treat liver cancer for many years. Clinical application of the drug has been shown to help control tumor progression, prolong survival and improve quality of life. However, the underlying mechanisms and side effects of this drug remain unclear, which greatly limits the clinical application and further optimization of DHW. In this study, we found that DHW inhibits the proliferation of hepatoma cells by modulating the epithelial growth factor (EGF) signaling pathway. Berberine and Costunolide are the main active ingredients in DHW. Interestingly, the combination of Berberine and Costunolide has a dramatic synergistic effect on inhibiting the proliferation of hepatoma cells. Neither Berberine nor Costunolide directly block EGFR phosphorylation. Berberine promotes endocytosis of activated EGFR, while as Costunolide increases ubiquitination of EGFR and reduces EGFR recycling to cell membrane distribution, thereby inhibiting EGF signaling. Berberine and Costunolide target two different steps in regulating the EGF signaling, which explains the synergistic anti-cancer effect of DHW. Since Berberine and Costunolide do not directly target EGFR phosphorylation, DHW could be a supplementary medicine to tyrosine kinase inhibitors in cancer therapy.


Asunto(s)
Carcinoma Hepatocelular/tratamiento farmacológico , Factor de Crecimiento Epidérmico/antagonistas & inhibidores , Medicina de Hierbas/métodos , Neoplasias Hepáticas/tratamiento farmacológico , Medicina Tradicional de Asia Oriental/métodos , Apoptosis/efectos de los fármacos , Berberina/uso terapéutico , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Citometría de Flujo , Humanos , Mongolia , Plantas Medicinales , Sesquiterpenos/uso terapéutico
5.
Hum Vaccin Immunother ; 11(7): 1779-87, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26038805

RESUMEN

Ricin toxin (RT) is an extremely potent toxin derived from the castor bean plant. As a possible bioterrorist weapon, it was categorized as a level B agent in international society. With the growing awareness and concerns of the "white powder incident" in recent years, it is indispensable to develop an effective countermeasure against RT intoxication. In this study we used site-directed mutagenesis and polymerase chain reaction (PCR) techniques to modify the gene of ricin A-chain (RTA). As a result, we have generated a mutated and truncated ricin A-chain (mtRTA) vaccine antigen by E.coli strain. The cytotoxicity assay was used to evaluate the safety of the as-prepared mtRTA antigen, and the results showed that there was no residual toxicity observed when compared to the recombinant RTA (rRTA) or native RT. Furthermore, BALB/c mice were subcutaneously (s.c.) vaccinated with mtRTA 3 times at an interval of 2 weeks, and then the survivals were evaluated after intraperitoneal (i.p.) or intratracheal challenge of RT. The vaccinated mice developed a strong protective immune response that was wholly protective against 40 × LD50 of RT i.p. injection or 20 × LD50 of RT intratracheal spraying. The mtRTA antigen has great potential to be a vaccine candidate for future application in humans.


Asunto(s)
Ricina/inmunología , Ricina/envenenamiento , Vacunas/genética , Vacunas/inmunología , Administración por Inhalación , Animales , Bioterrorismo , Escherichia coli/genética , Escherichia coli/metabolismo , Inmunización Pasiva , Inyecciones Subcutáneas , Dosificación Letal Mediana , Ratones , Ratones Endogámicos BALB C , Mutagénesis Sitio-Dirigida , Pruebas de Neutralización , Plásmidos/genética , Reacción en Cadena de la Polimerasa , Ricina/administración & dosificación , Análisis de Supervivencia , Vacunas/administración & dosificación
6.
Toxicon ; 100: 46-52, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-25912943

RESUMEN

Epsilon toxin (ETX) is produced by Clostridium perfringens type B and D strains, and is the causative agent of a lethal enterotoxemia in livestock animals and possibly in humans. However, many details of ETX structure and activity are not known. Therefore, it is important to clarify the relationship between ETX structure and activity. To explore the effect and mechanism of ETX amino acid residue Y196E substitution and C-terminal peptide on toxicity, four recombinant proteins, rETX (without 13 N-terminal peptides and 23 C-terminal peptides), rETX-C (rETX with 23 C-terminal peptides), rETX(Y196E) (rETX with an amino acid residue substitution at Y196) and rETX(Y196E)-C (rETX-C with a Y196E mutation), were constructed in this study. Both the amino acid residue Y196E substitution and the C-terminal peptide reduce ETX toxicity to a similar extent, and the two factors synergistically alleviate ETX toxicity. In addition, we demonstrated that the C-terminal peptides and Y196E amino acid mutation reduce the toxin toxicity in two different pathways: the C-terminal peptides inhibit the binding activity of toxins to target cells, and the Y196E amino acid mutation slightly inhibits the pore-forming or heptamer-forming process. Interaction between the two factors was not observed in pore-forming or binding assays but toxicity assays, which demonstrated that the relationship between domains of the toxin is more complicated than previously appreciated. However, the exact mechanism of synergistic action is not yet clarified.


Asunto(s)
Toxinas Bacterianas/química , Sustitución de Aminoácidos , Animales , Toxinas Bacterianas/toxicidad , Western Blotting , Dicroismo Circular , Perros , Femenino , Células de Riñón Canino Madin Darby , Ratones Endogámicos BALB C , Mutagénesis Sitio-Dirigida , Pruebas de Toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...