Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 46(10): 5182-5194, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29850893

RESUMEN

Tertiary sequence motifs encode interactions between RNA helices that create the three-dimensional structures of ribosomal subunits. A Right Angle motif at the junction between 16S helices 5 and 6 (J5/6) is universally conserved amongst small subunit rRNAs and forms a stable right angle in minimal RNAs. J5/6 does not form a right angle in the mature ribosome, suggesting that this motif encodes a metastable structure needed for ribosome biogenesis. In this study, J5/6 mutations block 30S ribosome assembly and 16S maturation in Escherichia coli. Folding assays and in-cell X-ray footprinting showed that J5/6 mutations favor an assembly intermediate of the 16S 5' domain and prevent formation of the central pseudoknot. Quantitative mass spectrometry revealed that mutant pre-30S ribosomes lack protein uS12 and are depleted in proteins uS5 and uS2. Together, these results show that impaired folding of the J5/6 right angle prevents the establishment of inter-domain interactions, resulting in global collapse of the 30S structure observed in electron micrographs of mutant pre-30S ribosomes. We propose that the J5/6 motif is part of a spine of RNA helices that switch conformation at distinct stages of assembly, linking peripheral domains with the 30S active site to ensure the integrity of 30S biogenesis.


Asunto(s)
Escherichia coli/genética , ARN Ribosómico 16S/química , ARN Ribosómico 16S/metabolismo , Subunidades Ribosómicas Pequeñas Bacterianas/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Espectrometría de Masas/métodos , Mutación , Conformación de Ácido Nucleico , ARN Ribosómico 16S/genética , Subunidades Ribosómicas Pequeñas Bacterianas/química , Subunidades Ribosómicas Pequeñas Bacterianas/genética , Rayos X
2.
Wiley Interdiscip Rev RNA ; 4(2): 181-203, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23378290

RESUMEN

Complex natural RNAs such as the ribosome, group I and group II introns, and RNase P exemplify the fact that three-dimensional (3D) RNA structures are highly modular and hierarchical in nature. Tertiary RNA folding typically takes advantage of a rather limited set of recurrent structural motifs that are responsible for controlling bends or stacks between adjacent helices. Herein, the GA minor and related structural motifs are presented as a case study to highlight several structural and folding principles, to gain further insight into the structural evolution of naturally occurring RNAs, as well as to assist the rational design of artificial RNAs.


Asunto(s)
ARN/química , Animales , Humanos , Modelos Moleculares , Conformación de Ácido Nucleico , Motivos de Nucleótidos , ARN/síntesis química , ARN/genética , ARN/metabolismo
3.
J Mol Biol ; 424(1-2): 54-67, 2012 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-22999957

RESUMEN

The right angle (RA) motif, previously identified in the ribosome and used as a structural module for nano-construction, is a recurrent structural motif of 13 nucleotides that establishes a 90° bend between two adjacent helices. Comparative sequence analysis was used to explore the sequence space of the RA motif within ribosomal RNAs in order to define its canonical sequence space signature. We investigated the sequence constraints associated with the RA signature using several artificial self-assembly systems. Thermodynamic and topological investigations of sequence variants associated with the RA motif in both minimal and expanded structural contexts reveal that the presence of a helix at the 3' end of the RA motif increases the thermodynamic stability and rigidity of the resulting three-helix junction domain. A search for the RA in naturally occurring RNAs as well as its experimental characterization led to the identification of the RA in groups IC1 and ID intron ribozymes, where it is suggested to play an integral role in stabilizing peripheral structural domains. The present study exemplifies the need of empirical analysis of RNA structural motifs for facilitating the rational design and structure prediction of RNAs.


Asunto(s)
Intrones , Conformación de Ácido Nucleico , ARN Ribosómico/química , Secuencia de Bases , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Termodinámica
4.
Biophys J ; 100(5): 1306-15, 2011 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-21354404

RESUMEN

Natively disordered proteins belong to a unique class of biomolecules whose function is related to their flexibility and their ability to adopt desired conformations upon binding to substrates. In some cases these proteins can bind multiple partners, which can lead to distinct structures and promiscuity in functions. In other words, the capacity to recognize molecular patterns on the substrate is often essential for the folding and function of intrinsically disordered proteins. Biomolecular pattern recognition is extremely relevant both in vivo (e.g., for oligomerization, immune response, induced folding, substrate binding, and molecular switches) and in vitro (e.g., for biosensing, catalysis, chromatography, and implantation). Here, we use a minimalist computational model system to investigate how polar/nonpolar patterns on a surface can induce the folding of an otherwise unstructured peptide. We show that a model peptide that exists in the bulk as a molten globular state consisting of many interconverting structures can fold into either a helix-coil-helix or an extended helix structure in the presence of a complementary designed patterned surface at low hydrophobicity (3.7%) or a uniform surface at high hydrophobicity (50%). However, we find that a carefully chosen surface pattern can bind to and catalyze the folding of a natively unfolded protein much more readily or effectively than a surface with a noncomplementary or uniform distribution of hydrophobic residues.


Asunto(s)
Modelos Moleculares , Péptidos/química , Pliegue de Proteína , Estabilidad Proteica , Estructura Secundaria de Proteína , Propiedades de Superficie
5.
Phys Biol ; 6(1): 015004, 2009 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-19208934

RESUMEN

The effect of surface tethering on the folding mechanism of the src-SH3 protein domain was investigated using a coarse-grained Go-type protein model. The protein was tethered at various locations along the protein chain and the thermodynamics and kinetics of folding were studied using replica exchange and constant temperature Langevin dynamics. Our simulations reveal that tethering in a structured part of the transition state can dramatically alter the folding mechanism, while tethering in an unstructured part leaves the folding mechanism unaltered as compared to bulk folding. Interestingly, there is only modest correlation between the tethering effect on the folding mechanism and its effect on thermodynamic stability and folding rates. We suggest locations on the protein at which tethering could be performed in single-molecule experiments so as to leave the folding mechanism unaltered from the bulk.


Asunto(s)
Dominios Homologos src , Simulación por Computador , Cinética , Modelos Moleculares , Conformación Proteica , Pliegue de Proteína , Proteínas/química , Proteínas/metabolismo , Temperatura , Termodinámica
6.
Nucleic Acids Res ; 35(20): 6995-7002, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17940098

RESUMEN

The T-loop motif is an important recurrent RNA structural building block consisting of a U-turn sub-motif and a UA trans Watson-Crick/Hoogsteen base pair. In the presence of a hairpin stem, the UA non-canonical base pair becomes part of the UA-handle motif. To probe the hierarchical organization and energy landscape of the T-loop, we performed replica exchange molecular dynamics (REMD) simulations of the T-loop in isolation and as part of a hairpin. Our simulations reveal that the isolated T-loop adopts coil conformers stabilized by base stacking. The T-loop hairpin shows a highly rugged energy landscape featuring multiple local minima with a transition state for folding consisting of partially zipped states. The U-turn displays a high conformational flexibility both when the T-loop is in isolation and as part of a hairpin. On the other hand, the stability of the UA non-canonical base pair is enhanced in the presence of the UA-handle. This motif is apparently a key component for stabilizing the T-loop, while the U-turn is mostly involved in long-range interaction. Our results suggest that the stability and folding of small RNA motifs are highly dependent on local context.


Asunto(s)
Haloarcula marismortui/química , Conformación de Ácido Nucleico , ARN/química , Modelos Moleculares , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA