Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biomol Struct Dyn ; 33(3): 674-89, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-24650179

RESUMEN

We have shown for the first time, connecting QM methods with QTAIM analysis and using the methodology of the sweeps of the energetical, electron-topological and geometrical parameters, that the tautomerisation of the wobble guanine·thymine (wG·T) DNA base mispair into the wG(*)·T(*) base mispair induced by the double proton transfer (DPT), which undergoes a concerted asynchronous pathway, is not mutagenic. The wG·T → wG(*)·T(*) DPT tautomerisation does not result in the transition of the G base into its mutagenic tautomeric form G(*) able to mispair with the T base within the Watson-Crick base pairing scheme. This observation is explained by the so-called quantum protection of the wG·T DNA base mispair from its mutagenic tautomerisation - the dynamical non-stability of the tautomerised wG(*)·T(*) base mispair and significantly negative value of the Gibbs free energy of activation for the reverse reaction of the wG·T → wG(*)·T(*) DPT tautomerisation.


Asunto(s)
Emparejamiento Base , Guanina/química , Timina/química , Disparidad de Par Base , Simulación por Computador , ADN/química , Enlace de Hidrógeno , Modelos Moleculares , Teoría Cuántica , Estereoisomerismo , Termodinámica
2.
J Comput Chem ; 35(6): 451-66, 2014 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-24382756

RESUMEN

Herein, we first address the question posed in the title by establishing the tautomerization trajectory via the double proton transfer of the adenine·guanine (A·G) DNA base mispair formed by the canonical tautomers of the A and G bases into the A*·G* DNA base mispair, involving mutagenic tautomers, with the use of the quantum-mechanical calculations and quantum theory of atoms in molecules (QTAIM). It was detected that the A·G ↔ A*·G* tautomerization proceeds through the asynchronous concerted mechanism. It was revealed that the A·G base mispair is stabilized by the N6H···O6 (5.68) and N1H···N1 (6.51) hydrogen bonds (H-bonds) and the N2H···HC2 dihydrogen bond (DH-bond) (0.68 kcal·mol(-1) ), whereas the A*·G* base mispair-by the O6H···N6 (10.88), N1H···N1 (7.01) and C2H···N2 H-bonds (0.42 kcal·mol(-1) ). The N2H···HC2 DH-bond smoothly and without bifurcation transforms into the C2H···N2 H-bond at the IRC = -10.07 Bohr in the course of the A·G ↔ A*·G* tautomerization. Using the sweeps of the energies of the intermolecular H-bonds, it was observed that the N6H···O6 H-bond is anticooperative to the two others-N1H···N1 and N2H···HC2 in the A·G base mispair, while the latters are significantly cooperative, mutually strengthening each other. In opposite, all three O6H···N6, N1H···N1, and C2H···N2 H-bonds are cooperative in the A*·G* base mispair. All in all, we established the dynamical instability of the А*·G* base mispair with a short lifetime (4.83·10(-14) s), enabling it not to be deemed feasible source of the A* and G* mutagenic tautomers of the DNA bases. The small lifetime of the А*·G* base mispair is predetermined by the negative value of the Gibbs free energy for the A*·G* → A·G transition. Moreover, all of the six low-frequency intermolecular vibrations cannot develop during this lifetime that additionally confirms the aforementioned results. Thus, the A*·G* base mispair cannot be considered as a source of the mutagenic tautomers of the DNA bases, as the A·G base mispair dissociates during DNA replication exceptionally into the A and G monomers in the canonical tautomeric form.


Asunto(s)
Adenina/química , Emparejamiento Base , Guanina/química , Enlace de Hidrógeno , Modelos Moleculares , Mutación Puntual , Teoría Cuántica , Termodinámica
3.
Phys Chem Chem Phys ; 16(8): 3715-25, 2014 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-24418908

RESUMEN

We have scrupulously explored the tautomerisation mechanism via the double proton transfer of the A*·A(syn) Topal-Fresco base mispair (C(s) symmetry), formed by the imino and amino tautomers of the adenine DNA base in the anti- and syn-conformations, respectively, bridging quantum-mechanical calculations with Bader's quantum theory of atoms in molecules. It was found that the A*·A(syn) ↔ A·A*(syn) tautomerisation is the asynchronous concerted process. It was established that the A*·A(syn) DNA mismatch is stabilized by the N6H···N6 (6.35) and N1H···N7 (6.17) hydrogen (H) bonds, whereas the A·A*(syn) base mispair (Cs) by the N6H···N6 (8.82) and N7H···N1 (9.78) H-bonds and the C8H···HC2 HH-bond (0.30 kcal mol(-1)). Using the sweeps of the energies of the intermolecular H-bonds, it was observed that the N6H···N6 and N1H···N7/N7H···N1 H-bonds are anti-cooperative and mutually weaken each other in the A*·A(syn) and A·A*(syn) mispairs. It was revealed that the A·A*(syn) DNA mismatch is a dynamically unstable structure with a short lifetime of 1.12 × 10(-13) s and any of its 6 low-frequency intermolecular vibrations can develop during this period of time. This observation makes it impossible to change the tautomeric status of the A bases upon the dissociation of the A*·A(syn) base mispair into the monomers during DNA replication.


Asunto(s)
Adenina/química , ADN/química , Teoría Cuántica , Disparidad de Par Base , Enlace de Hidrógeno , Conformación Molecular , Termodinámica
4.
J Biomol Struct Dyn ; 32(5): 730-40, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-23947531

RESUMEN

A comprehensive quantum-chemical investigation of the conformational landscapes of two nucleoside HIV-1 reverse transcriptase inhibitors, 2',3'-didehydro-2',3'-dideoxyadenosine (d4A), and 2',3'-didehydro-2',3'-dideoxyguanosine (d4G), has been performed at the MP2/6-311++G(d,p)//B3LYP/6-31G(d,p) level of theory. It was found that d4A can adopt 21 conformers within a 5.17 kcal/mol Gibbs free energy range, whereas d4G has 20 conformers within 6.23 kcal/mol at T = 298.15 K. Both nucleosides are shaped by a sophisticated network of specific noncovalent interactions, including conventional (OH[Formula: see text]O, NH[Formula: see text]O) and weak (CH[Formula: see text]O, CH[Formula: see text]N) hydrogen bonds, as well as dihydrogen (CH[Formula: see text]HC) contacts. For the OH[Formula: see text]O, NH[Formula: see text]O, and CH[Formula: see text]O hydrogen bonds, natural bond orbital analysis revealed hyperconjugative interactions between the oxygen lone pairs and the antibonding orbital of the donor group. For the CH[Formula: see text]HC contacts, the electron density migrates from the antibonding orbital, corresponding to the CH group of the sugar residue, to the bonding orbital relative to the same group in the nucleobase. The results confirm the current belief that the biological activity of d4A and d4G is connected with the termination of the DNA chain synthesis in the 5'-3' direction. Thus, these nucleosides act as competitive HIV-1 reverse transcriptase inhibitors.


Asunto(s)
ADN/biosíntesis , Didesoxiadenosina/análogos & derivados , Didesoxinucleósidos/química , Transcriptasa Inversa del VIH/química , Modelos Moleculares , Inhibidores de la Transcriptasa Inversa/química , Didesoxiadenosina/química , VIH-1 , Conformación Molecular , Conformación Proteica
5.
J Mol Model ; 19(10): 4223-37, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23716175

RESUMEN

Combining quantum-mechanical (QM) calculations with quantum theory of atoms in molecules (QTAIM) and using the methodology of sweeps of the energetic, electron-topological, geometric and polar parameters, which describe the course of the tautomerization along the intrinsic reaction coordinate (IRC), we showed for the first time that the biologically important A∙A base pair (Cs symmetry) formed by the amino and imino tautomers of adenine (A) tautomerizes via asynchronous concerted double proton transfer (DPT) through a transition state (TS), which is the A(+)∙A(-) zwitterion with the separated charge, with Cs symmetry. The nine key points, which can be considered as electron-topological "fingerprints" of the asynchronous concerted A∙A ↔A ∙A tautomerization process via the DPT, were detected and completely investigated along the IRC of the A∙A*↔A*∙A tautomerization. Based on the sweeps of the H-bond energies, it was found that intermolecular antiparallel N6Н⋯N6 (7.01 kcal mol(-1)) and N1H⋯N1 (6.88 kcal mol(-1)) H-bonds are significantly cooperative and mutually reinforce each other. It was shown for the first time that the A∙A ↔A ∙A tautomerization is assisted by the third C2H⋯HC2 dihydrogen bond (DHB), which, in contrast to the two others N6H⋯N6 and N1H⋯N1 H-bonds, exists within the IRC range from -2.92 to 2.92 Å. The DHB cooperatively strengthens, reaching its maximum energy 0.42 kcal mol(-1) at IRC = -0.52 Å and minimum energy 0.25 kcal mol(-1) at IRC = -2.92 Å, and is accompanied by strengthening of the two other aforementioned classical H-bonds. We established that the C2H⋯HC2 DHB completely satisfies the electron-topological criteria for H-bonding, in particular Bader's and all eight "two-molecule" Koch and Popelier's criteria. The positive value of the Grunenberg's compliance constant (5.203 Å/mdyn) at the TSA∙A ↔A ∙A proves that the C2H⋯HC2 DHB is a stabilizing interaction. NBO analysis predicts transfer of charge from σ(C2-H) bonding orbital to σ (H-C2) anti-bonding orbital; at this point, the stabilization energy E((2)) is equal to 0.19 kcal mol(-1) at the TSA∙A ↔A ∙A.


Asunto(s)
Adenina/química , Emparejamiento Base , ADN/química , Simulación por Computador , Enlace de Hidrógeno , Isomerismo , Modelos Químicos , Modelos Moleculares , Teoría Cuántica , Termodinámica
6.
J Mol Model ; 19(10): 4119-37, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23292249

RESUMEN

The biologically important tautomerization of the Hyp·Cyt, Hyp·Thy and Hyp·Hyp base pairs to the Hyp·Cyt, Hyp·Thy and Hyp·Hyp base pairs, respectively, by the double proton transfer (DPT) was comprehensively studied in vacuo and in the continuum with a low dielectric constant (ε = 4) corresponding to hydrophobic interfaces of protein-nucleic acid interactions by combining theoretical investigations at the B3LYP/6-311++G(d,p) level of QM theory with QTAIM topological analysis. Based on the sweeps of the energetic, electron-topological, geometric and polar parameters, which describe the course of the tautomerization along the intrinsic reaction coordinate (IRC), it was proved that the tautomerization through the DPT is concerted and asynchronous process for the Hyp·Cyt and Hyp·Thy base pairs, while concerted and synchronous for the Hyp·Hyp homodimer. The continuum with ε = 4 does not affect qualitatively the course of the tautomerization reaction for all studied complexes. The nine key points along the IRC of the Hyp·Cyt↔Hyp·Cyt and Hyp·Thy↔Hyp·Thy tautomerizations and the six key points of the Hyp·Hyp↔Hyp·Hyp tautomerization have been identified and fully characterized. These key points could be considered as electron-topological "fingerprints" of concerted asynchronous (for Hyp·Cyt and Hyp·Thy) or synchronous (for Hyp·Hyp) tautomerization process via the DPT. It was found, that in the Hyp·Cyt, Hyp·Thy, Hyp·Hyp and Hyp·Hyp base pairs all H-bonds are significantly cooperative and mutually reinforce each other, while the C2H…O2 H-bond in the Hyp·Cyt base pair and the O6H…O4 H-bond in the Hyp·Thy base pair behave anti-cooperatively, i.e., they become weakened, while two others become strengthened.


Asunto(s)
Desoxicitidina/química , Hipoxantina/química , Timidina/química , Emparejamiento Base , Simulación por Computador , ADN/química , Enlace de Hidrógeno , Isomerismo , Modelos Químicos , Modelos Moleculares , Oxidación-Reducción , Teoría Cuántica , Termodinámica
7.
Phys Chem Chem Phys ; 14(19): 6787-95, 2012 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-22461011

RESUMEN

A comprehensive quantum-chemical conformational analysis of two nucleoside analogues, 2',3'-didehydro-2',3'-dideoxyuridine (d4U) and 2',3'-didehydro-2',3'-dideoxycytidine (d4C), is reported. The electronic structure calculations were performed at the MP2/6-311++G(d,p)//B3LYP/6-31++G(d,p) level of theory. It was found that d4U and d4C adopt 20 conformers and 19 conformers, respectively, which correspond to local minima on the respective potential energy landscapes. QTAIM and NBO analyses show that the d4U and d4C conformers are stabilised by a complicated network of specific intramolecular interactions, which includes conventional (OHO) and non-conventional (CHO, CHHC) H-bonds as well as closed-shell van der Waals (CO) contacts. A satisfactory linear correlation was found between Grunenberg's compliance constants for closed-shell intramolecular interactions and their energy. It is shown that there are no conformational obstacles for incorporation of d4U and d4C into the double helical A and B forms of DNA. The less pronounced biological activity of d4U as compared to 2',3'-didehydro-2',3'-dideoxythymidine (d4T) is most likely due to the presence of the bulky methyl group at the 5-position of d4T, which can be recognised by target enzymes.


Asunto(s)
Didesoxinucleósidos/química , VIH-1/enzimología , Teoría Cuántica , Inhibidores de la Transcriptasa Inversa/química , Zalcitabina/análogos & derivados , Cristalografía por Rayos X , Enlace de Hidrógeno , Modelos Moleculares , Conformación Molecular , Zalcitabina/química
8.
J Biomol Struct Dyn ; 29(1): 51-65, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21696225

RESUMEN

The aim of this work is to cast some light on the H-bonds in double-stranded DNA in its AI and BI forms. For this purpose, we have performed the MP2 and DFT quantum chemical calculations of the canonical nucleoside conformers, relative to the AI and BI DNA forms, and their Watson-Crick pairs, which were regarded as the simplest models of the double-stranded DNA. Based on the atoms-in-molecules analysis (AIM), five types of the CH···O hydrogen bonds, involving bases and sugar, were detected numerically from 1 to 3 per a conformer: C2'H···O5', C1'H···O2, C6H···O5', C8H···O5', and C6H···O4'. The energy values of H-bonds occupy the range of 2.3-5.6 kcal/mol, surely exceeding the kT value (0.62 kcal/mol). The nucleoside CH···O hydrogen bonds appeared to "survive" turns of bases against the sugar, sometimes in rather large ranges of the angle values, pertinent to certain conformations, which points out to the source of the DNA lability, necessary for the conformational adaptation in processes of its functioning. The calculation of the interactions in the dA·T nucleoside pair gives evidence, that additionally to the N6H···O4 and N1···N3H canonical H-bonds, between the bases adenine and thymine the third one (C2H···O2) is formed, which, though being rather weak (about 1 kcal/mol), satisfies the AIM criteria of H-bonding and may be classified as a true H-bond. The total energy of all the CH···O nontraditional intramolecular H-bonds in DNA nucleoside pairs appeared to be commensurable with the energy of H-bonds between the bases in Watson-Crick pairs, which implies their possible important role in the DNA shaping.


Asunto(s)
ADN/química , Emparejamiento Base , Enlace de Hidrógeno , Modelos Moleculares , Conformación Molecular , Nucleósidos/química , Termodinámica
9.
J Phys Chem B ; 112(4): 1240-50, 2008 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-18092770

RESUMEN

A comprehensive conformational analysis of isolated 2'-deoxyuridine (dU), a minor DNA nucleoside, has been performed by means of ab initio calculations at the MP2/6-311++G (d,p)//DFT B3LYP/6-31G (d,p) level of theory. At 298.15 and 420 K, all 94 allowed conformers of dU are within 8.96 and 7.91 kcal/mol Gibbs energy ranges, respectively. Syn orientation for the base and South (S) conformers for the sugar dominate at 298.15 K: syn/anti=62.3%:37.7% and S/N=77.2%:22.8%. At 420 K in the majority of conformers, the base is anti oriented and the population of North (N) sugars increases: syn/anti=39.3%:60.7% and S/N=63.0%:37.0%. Values of all conformational parameters and correlations between them, as well as their correlations with valence bonds, and also correlations between valence bonds and angles were estimated. In general, 14 types of intramolecular H-bonds were detected (1-3 H-bonds per conformer, the total number 175), namely, C1'H...O2 (16 H-bonds), C2'H1...O5' (9), C2'H2...O2 (21), C3'H...O2 (21), C5'H1...O2 (14), C5'H2...O2 (11), C6H...O4' (37), C6H...O5' (22), C3'H...HC6 (4), O5'H...HC6 (2), O3'H...O5' (5), O5'H...O4' (1), O5'H...O3' (4), and O5'H...O2 (8). Geometric, vibrational, structural-topological, and energetic features of the OH...O intramolecular H-bonds in dU conformers were determined. The close similarity between energetic and geometric characteristics of dU and thymidine DNA-like conformers in anti and relevant syn conformations and their transition states of the anti-->syn interconversion implies that mismatch DNA glycosylase discriminates between the two nucleosides, mainly because of the difference in the shapes of their bases. Convolution of calculated IR spectra of all the dU conformers within the limits 3400-3700 cm(-1) appears to be consistent with its low-temperature matrix IR spectrum (Ivanov et al. Spectrochim. Acta, Part A 2003, 59, 1959), wavenumber discrepancy not exceeding 1%. It was concluded that, for a reliable reproduction of the experimental spectrum, the whole set of conformers should be taken into consideration. The suggested method makes reconstruction of the isolated nucleoside IR spectrum at a physiological interval of temperature reasonably possible.


Asunto(s)
ADN/química , Desoxiuridina/química , Temperatura , Biología Computacional , Cristalografía por Rayos X , Enlace de Hidrógeno , Modelos Moleculares , Conformación Molecular , Oxígeno/química , Espectrofotometría Infrarroja , Vibración , Agua/química
10.
J Phys Chem B ; 111(32): 9655-63, 2007 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-17655217

RESUMEN

A comprehensive conformational analysis of isolated 2'-beta-deoxy-thymidine (T), canonical DNA nucleoside, has been performed by means of ab initio calculations at the MP2/6-311++G(d,p)//DFT B3LYP/6-31G(d,p) level of theory. At 298.15 K, all 92 conformers of isolated dT are within a 7.49 kcal/mol Gibbs energy range. Syn orientation for the base and South (S) conformers for the sugar dominate at this temperature: syn/anti = 61.6%:38.4% and S/N = 74.5%:25.5%. However, at 420 K, the majority of conformers contain anti base and the population of North (N) sugars increases: syn/anti = 38.0%:62.0% and S/N = 59.5%:40.5%. The whole conformational parameters (P, chi, gamma, delta, beta, epsilon, nu max) were analyzed as well as the energies of the OH...O intramolecular H-bonds on the basis of nu(OH) stretching vibrations. Convolution of calculated IR spectra of all of the T conformers appears consistent with its low-temperature matrix spectrum (Ivanov et al. Low Temp. Phys. 2003, 29, 809). The maximal discrepancy in frequencies between calculated and experimental spectra is less than 1%. A conclusion was made that for reliable reconstruction of the isolated nucleoside IR spectrum the quasi whole set of conformers should be taken into consideration. In essence, this result opens up a possibility to reconstruct IR spectra of isolated nucleosides at physiological temperatures with rather satisfactory probability.


Asunto(s)
Teoría Cuántica , Timidina/química , Algoritmos , Conformación Molecular , Espectrofotometría Infrarroja , Temperatura , Termodinámica
11.
J Phys Chem B ; 111(22): 6263-71, 2007 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-17503799

RESUMEN

A comprehensive conformational analysis of isolated 2'-beta-deoxy-6-azacytidine (d6AC), an analogue of therapeutically active 6-azacytidine (6AC), has been performed by means of ab initio calculations at the MP2/6-311++G(2df,pd)//DFT B3LYP/6-31G(d,p) level of theory. Among the 81 conformers located within a 7.83 kcal/mol Gibbs energy range at T = 298.15 K, 38 contain syn-oriented bases with respect to 2'-deoxyribose; the other conformers include anti-oriented bases. Energetic analysis of these conformers shows that conformational equilibrium of isolated d6AC at T = 298.15 K is shifted to syn conformation with a syn/anti ratio estimated as 61.4%:38.6%. As far as the sugar conformation is concerned, 40 conformers contain north (N) (with 0.3 degrees < or = P < or = 40.1 degrees), and the rest possess south (S) (with 157.1 degrees < or = P < or = 207.0 degrees) puckers, where P is the pseudorotational angle of the furanose ring. The S/N occupancy ratio is estimated as 80.2%:19.8% (T = 298.15 K). The two most stable conformers are energetically quasidegenerate and correspond to both C2'-endo/syn conformers differing only by orientation of the O3'H hydroxyl group. They are both stabilized by means of similar intramolecular H-bonds, i.e., O5'H...O2, C2'H2...O2, and C2'H2...O5'. As examined by AIM criteria, from 1 to 3 H-bonds per conformer were identified among 13 possible interactions: O5'H...O2, O5'H...N6, O3'H...O5', O5'H...O3', C1'H...O2, C2'H2...O2, C2'H2...O5', C3'H...O2, C3'H...N6, C5'H1...O2, C5'H2...O2, C5'H1...N6, and C5'H2...N6. The biological effect of d6AC is conceived as an inhibition of replicative DNA polymerase caused by an unusual orientation of the sugar residue against the base in the only A form DNA-like conformer.


Asunto(s)
Azacitidina/análogos & derivados , Modelos Moleculares , Azacitidina/química , Azacitidina/farmacología , ADN de Forma A , Enlace de Hidrógeno , Isomerismo , Conformación Molecular , Inhibidores de la Síntesis del Ácido Nucleico , Nucleósidos de Pirimidina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA