Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
1.
Sci Rep ; 14(1): 10958, 2024 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740853

RESUMEN

Adoption of plant-derived compounds for the management of oral cancer is encouraged by the scientific community due to emerging chemoresistance and conventional treatments adverse effects. Considering that very few studies investigated eugenol clinical relevance for gingival carcinoma, we ought to explore its selectivity and performance according to aggressiveness level. For this purpose, non-oncogenic human oral epithelial cells (GMSM-K) were used together with the Tongue (SCC-9) and Gingival (Ca9-22) squamous cell carcinoma lines to assess key tumorigenesis processes. Overall, eugenol inhibited cell proliferation and colony formation while inducing cytotoxicity in cancer cells as compared to normal counterparts. The recorded effect was greater in gingival carcinoma and appears to be mediated through apoptosis induction and promotion of p21/p27/cyclin D1 modulation and subsequent Ca9-22 cell cycle arrest at the G0/G1 phase, in a p53-independent manner. At these levels, distinct genetic profiles were uncovered for both cell lines by QPCR array. Moreover, it seems that our active component limited Ca9-22 and SCC-9 cell migration respectively through MMP1/3 downregulation and stimulation of inactive MMPs complex formation. Finally, Ca9-22 behaviour appears to be mainly modulated by the P38/STAT5/NFkB pathways. In summary, we can disclose that eugenol is cancer selective and that its mediated anti-cancer mechanisms vary according to the cell line with gingival squamous cell carcinoma being more sensitive to this phytotherapy agent.


Asunto(s)
Apoptosis , Carcinoma de Células Escamosas , Proliferación Celular , Eugenol , Neoplasias Gingivales , Humanos , Eugenol/farmacología , Eugenol/uso terapéutico , Neoplasias Gingivales/tratamiento farmacológico , Neoplasias Gingivales/patología , Neoplasias Gingivales/metabolismo , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Quimioterapia Adyuvante/métodos
3.
Int Microbiol ; 2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37824024

RESUMEN

Staphylococcus epidermidis, despite being a commensal of human skin and mucosa, is a major nosocomial pathogen implicated in device-associated infections. The dissemination of infection to other body sites is related to biofilm dispersal. This study focused on the dispersion stage of S. epidermidis CIP 444 biofilm, with the assessment of biofilm matrix composition in a time-dependent experiment (7 days extended) with 3 independent repetitions, using confocal laser scanning microcopy (CLSM) in association with ZEN 3.4 blue edition, COMSTAT, and ImageJ software. SYTO-9, propidium iodide (PI), DID'OIL, FITC, and calcofluor white M2R (CFW) were used to stain biofilm components. The results indicated that the biomass of dead cells increased from 15.18 ± 1.81 µm3/µm2 (day 3) to 23.15 ± 6.075 µm3/µm2 (day 4), along with a decrease in alive cells' biomass from 22.75 ± 2.968 µm3/µm2 (day 3) to 18.95 ± 5.713 µm3/µm2 (day 4). When the intensities were measured after marking the biofilm components, in a 24-h-old biofilm, polysaccharide made up the majority of the investigated components (52%), followed by protein (18.9%). Lipids make up just 11.6% of the mature biofilm. Protein makes up the largest portion (48%) of a 4-day-old biofilm, followed by polysaccharides (37.8%) and lipids (7.27%). According to our findings, S. epidermidis CIP 444 dispersion occurred on day 4 of incubation, and new establishment of the biofilm occurred on day 7. Remarkable changes in biofilm composition will pave the way for a new approach to understanding bacterial strategies inside biofilms and finding solutions to their impacts in the medical field.

4.
Cell Biosci ; 13(1): 129, 2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37464380

RESUMEN

BACKGROUND: How transcription factors (TFs) down-regulate gene expression remains ill-understood, especially when they bind to multiple enhancers contacting the same gene promoter. In particular, it is not known whether they exert similar or significantly different molecular effects at these enhancers. RESULTS: To address this issue, we used a particularly well-suited study model consisting of the down-regulation of the TGFB2 gene by the TF Fra-1 in Fra-1-overexpressing cancer cells, as Fra-1 binds to multiple enhancers interacting with the TGFB2 promoter. We show that Fra-1 does not repress TGFB2 transcription via reducing RNA Pol II recruitment at the gene promoter but by decreasing the formation of its transcription-initiating form. This is associated with complex long-range chromatin interactions implicating multiple molecularly and functionally heterogeneous Fra-1-bound transcriptional enhancers distal to the TGFB2 transcriptional start site. In particular, the latter display differential requirements upon the presence and the activity of the lysine acetyltransferase p300/CBP. Furthermore, the final transcriptional output of the TGFB2 gene seems to depend on a balance between the positive and negative effects of Fra-1 at these enhancers. CONCLUSION: Our work unveils complex molecular mechanisms underlying the repressive actions of Fra-1 on TGFB2 gene expression. This has consequences for our general understanding of the functioning of the ubiquitous transcriptional complex AP-1, of which Fra-1 is the most documented component for prooncogenic activities. In addition, it raises the general question of the heterogeneity of the molecular functions of TFs binding to different enhancers regulating the same gene.

5.
Cardiovasc Res ; 119(13): 2355-2367, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37517061

RESUMEN

AIMS: Inflammatory cytokines play a critical role in the progression of calcific aortic valve disease (CAVD), for which there is currently no pharmacological treatment. The aim of this study was to test the hypothesis that interleukin-8 (IL-8), known to be involved in arterial calcification, also promotes aortic valve calcification (AVC) and to evaluate whether pharmacologically blocking the IL-8 receptor, CXC motif chemokine receptor 2 (CXCR2), could be effective in preventing AVC progression. METHODS AND RESULTS: A cohort of 195 patients (median age 73, 74% men) diagnosed with aortic valve stenosis (severe in 16.9% of cases) were prospectively followed by CT for a median time of 2.6 years. A Cox proportional hazards regression analysis indicated that baseline IL-8 serum concentrations were associated with rapid progression of AVC, defined as an annualized change in the calcification score by CT ≥ 110 AU/year, after adjustment for age, gender, bicuspid anatomy, and baseline disease severity. In vitro, exposure of primary human aortic valvular interstitial cells (hVICs) to 15 pg/mL IL-8 induced a two-fold increase in inorganic phosphate (Pi)-induced calcification. IL-8 promoted NFκB pathway activation, MMP-12 expression, and elastin degradation in hVICs exposed to Pi. These effects were prevented by SCH527123, an antagonist of CXCR2. The expression of CXCR2 was confirmed in hVICs and samples of aortic valves isolated from patients with CAVD, in which the receptor was mainly found in calcified areas, along with MMP-12 and a degraded form of elastin. Finally, in a rat model of chronic kidney disease-associated CAVD, SCH527123 treatment (1 mg/kg/day given orally for 11 weeks) limited the decrease in aortic cusp separation, the increase in maximal velocity of the transaortic jet, and the increase in aortic mean pressure gradient measured by echocardiography, effects that were associated with a reduction in hydroxyapatite deposition and MMP-12 expression in the aortic valves. CONCLUSION: Overall, these results highlight, for the first time, a significant role for IL-8 in the progression of CAVD by promoting calcification via a CXCR2- and MMP-12-dependent mechanism that leads to elastin degradation, and identify CXCR2 as a promising therapeutic target for the treatment of CAVD.

7.
Anat Cell Biol ; 56(2): 219-227, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-36967238

RESUMEN

Adult neurogenesis has been reported in the hypothalamus, subventricular zone and subgranular zone in the hippocamp. Recent studies indicated that new cells in the hypothalamus are affected by diet. We previously showed beneficial effects of safflower seed oil (SSO), a rich source of linoleic acid (LA; 74%), on proliferation and differentiation of neural stem cells (NSCs) in vitro. In this study, the effect of SSO on hypothalamic neurogenesis was investigated in vivo, in comparison to synthetic LA. Adult mice were treated with SSO (400 mg/kg) and pure synthetic LA (300 mg/kg), at similar concentrations of LA, for 8 weeks and then hypothalamic NSCs were cultured and subsequently used for Neurosphere-forming assay. In addition, serum levels of brain-derived neurotrophic factor (BNDF) were measured using enzyme-linked immunosorbent assay. Administration of SSO for 8 weeks in adult mice promoted the proliferation of NSCs isolated from SSO-treated mice. Immunofluorescence staining of the hypothalamus showed that the frequency of astrocytes (glial fibrillary acidic protein+ cells) are not affected by LA or SSO. However, the frequency of immature (doublecortin+ cells) and mature (neuronal nuclei+ cells) neurons significantly increased in LA- and SSO-treated mice, compared to vehicle. Furthermore, both LA and SSO caused a significant increase in the serum levels of BDNF. Importantly, SSO acted more potently than LA in all experiments. The presence of other fatty acids in SSO, such as oleic acid and palmitic acid, suggests that they could be responsible for SSO positive effect on hypothalamic proliferation and neurogenesis, compared to synthetic LA at similar concentrations.

8.
Proc Natl Acad Sci U S A ; 120(14): e2219334120, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36972442

RESUMEN

Previous studies revealed a latitudinal gradient of multiple sclerosis (MS) prevalence, increasing by moving from the equator to the poles. The duration and quality of an individual's exposure to sunlight vary with latitude. Skin exposure to sunlight activates vitamin D synthesis, while light absence, as perceived by the eyes, activates melatonin synthesis in the pineal gland. Vitamin D or melatonin deficiency/insufficiency or overdose can occur at any latitude due to specific lifestyles and diets. Moving away from the equator, especially beyond 37°, decreases vitamin D while raising melatonin. Furthermore, melatonin synthesis increases in cold habitats like northern countries. Since melatonin's beneficial role was shown in MS, it is expected that northern countries whose individuals have higher endogenous melatonin should show a lower MS prevalence; however, these are ranked with the highest scores. In addition, countries like the United States and Canada have uncontrolled over-the-counter usage. In high latitudes, vitamin D deficiency and a higher MS prevalence persist even though vitamin D is typically compensated for by supplementation and not sunlight. Recently, we found that prolonged darkness increased MS melatonin levels, mimicking the long-term increase in northern countries. This caused a reduction in cortisol and increased infiltration, inflammation, and demyelination, which were all rescued by constant light therapy. In this review, we explain melatonin and vitamin D's possible roles in MS prevalence. The possible causes in northern countries are then discussed. Finally, we suggest strategies to treat MS by manipulating vitamin D and melatonin, preferably with sunlight or darkness, not supplements.


Asunto(s)
Melatonina , Esclerosis Múltiple , Deficiencia de Vitamina D , Humanos , Vitamina D , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/epidemiología , Melatonina/uso terapéutico , Vitaminas , Deficiencia de Vitamina D/epidemiología
10.
Exp Mol Med ; 55(1): 215-227, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36635431

RESUMEN

Conflicting results on melatonin synthesis in multiple sclerosis (MS) have been reported due to variabilities in patient lifestyles, which are not considered when supplementing melatonin. Since melatonin acts through its receptors, we identified melatonin receptors in oligodendrocytes (OLs) in the corpus callosum, where demyelination occurs; the subventricular zone, where neural stem/progenitor cells (NSPCs) are located; and the choroid plexus, which functions as a blood-cerebrospinal fluid barrier. Moreover, using chimeric mice, resident macrophages were found to express melatonin receptors, whereas bone marrow-derived macrophages lost this expression in the demyelinated brain. Next, we showed that cuprizone-fed mice, which is an MS model, tended to have increased melatonin levels. While we used different approaches to alter the circadian rhythm of melatonin and cortisol, only the constant light approach increased NSPC proliferation and differentiation to oligodendrocyte precursor cells (OPCs), OPCs maturation to OLs and recruitment to the site of demyelination, the number of patrolling monocytes, and phagocytosis. In contrast, constant darkness and exogenous melatonin exacerbated these events and amplified monocyte infiltration. Therefore, melatonin should not be considered a universal remedy, as is currently claimed. Our data emphasize the importance of monitoring melatonin/cortisol oscillations in each MS patient by considering diet and lifestyle to avoid melatonin overdose.


Asunto(s)
Enfermedades Desmielinizantes , Melatonina , Monocitos , Esclerosis Múltiple , Vaina de Mielina , Fagocitosis , Animales , Ratones , Diferenciación Celular , Enfermedades Desmielinizantes/inmunología , Enfermedades Desmielinizantes/metabolismo , Modelos Animales de Enfermedad , Hidrocortisona , Melatonina/farmacología , Ratones Endogámicos C57BL , Monocitos/inmunología , Monocitos/metabolismo , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/metabolismo , Fagocitosis/inmunología , Receptores de Melatonina , Vaina de Mielina/metabolismo
11.
Neurochem Int ; 163: 105489, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36657722

RESUMEN

BACKGROUND: Pregnenolone is a precursor of various steroid hormones involved in osteoblast proliferation, microtubules polymerization and cell survival protection. Previous reports focused on the effects of pregnenolone metabolites on stem cell proliferation and differentiation; however, the effects of pregnenolone itself has not been well explored. The present study aimed to investigate the role of pregnenolone on NSC proliferation and to determine the doses required for NSC differentiation as well as the various genes involved in its mechanism of action. METHODS: NSCs were isolated from the embryonic cortex of E14 mice, incubated for 5 days, and then treated with pregnenolone doses of 2, 5, 10, 15 and 20 µM for another 5 days. The number of neurospheres and neurosphere derived cells were then counted. Flow cytometry was used to evaluate the differentiation of NSCs into oligodendrocytes, astrocytes, and neurons. The expression level of Notch1, Pax6 and Sox10 genes were also measured by Real Time PCR after 5 days of treatment. RESULTS: Our data suggest that treatment with 10 µM pregnenolone is optimal for NSC proliferation. In fact, this concentration caused the highest increase in the number of neurospheres and neurosphere derived cells, compared to the control group. In addition, treatment with low doses of pregnenolone (5 and 10 µM) caused a significant increase in NSC differentiation towards immature (Olig2+) and mature (MBP+) oligodendrocyte cell populations, compared to controls. However, NSC differentiation into neurons (beta III tubulin + cells) increased in all treatment groups, with the highest and most significant increase obtained at 15 µM concentration. It is worth noting that pregnenolone at the highest concentration of 15 µM decreased the number of astrocytes (GFAP+). Furthermore, there was an increase of Sox10 expression with low pregnenolone doses, leading to oligodendrogenesis, whereas Notch1 and Pax6 gene expression increased in pregnenolone groups with more neurogenesis. CONCLUSION: Pregnenolone regulates NSCs proliferation in vitro. Treatment with low doses of pregnenolone caused an increase in the differentiation of NSCs into mature oligodendrocytes while higher doses increased the differentiation of NSCs into neurons. Oligodendrogenesis was accompanied by Sox10 while neurogenesis occurred together with Notch1 and Pax6 expression.


Asunto(s)
Células-Madre Neurales , Factor de Transcripción PAX6 , Pregnenolona , Factores de Transcripción SOXE , Animales , Ratones , Diferenciación Celular/fisiología , Proliferación Celular , Células Cultivadas , Células-Madre Neurales/metabolismo , Neurogénesis/fisiología , Neuronas/metabolismo , Factor de Transcripción PAX6/metabolismo , Factores de Transcripción SOXE/metabolismo , Tubulina (Proteína)/metabolismo , Pregnenolona/farmacología , Receptor Notch1/metabolismo
12.
Mass Spectrom Rev ; 42(1): 189-205, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-34323300

RESUMEN

Traumatic brain injury (TBI) represents one of the major public health concerns worldwide due to the increase in TBI incidence as a result of injuries from daily life accidents such as sports and motor vehicle transportation as well as military-related practices. This type of central nervous system trauma is known to predispose patients to several neurological disorders such as Parkinson's disease, Alzheimer's disease, chronic trauamatic encephalopathy, and age-related Dementia. Recently, several proteomic and lipidomic platforms have been applied on different TBI studies to investigate TBI-related mechanisms that have broadened our understanding of its distinct neuropathological complications. In this study, we provide an updated comprehensive overview of the current knowledge and novel perspectives of the spatially resolved microproteomics and microlipidomics approaches guided by mass spectrometry imaging used in TBI studies and its applications in the neurotrauma field. In this regard, we will discuss the use of the spatially resolved microproteomics and assess the different microproteomic sampling methods such as laser capture microdissection, parafilm assisted microdissection, and liquid microjunction extraction as accurate and precise techniques in the field of neuroproteomics. Additionally, we will highlight lipid profiling applications and their prospective potentials in characterizing molecular processes involved in the field of TBI. Specifically, we will discuss the phospholipid metabolism acting as a precursor for proinflammatory molecules such as eicosanoids. Finally, we will survey the current state of spatial neuroproteomics and microproteomics applications and present the various studies highlighting their findings in these fields.


Asunto(s)
Enfermedad de Alzheimer , Lesiones Traumáticas del Encéfalo , Humanos , Espectrometría de Masas , Proteómica/métodos , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/metabolismo
13.
Transl Res ; 251: 2-13, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35724933

RESUMEN

Calcium accumulation in atherosclerotic plaques predicts cardiovascular mortality, but the mechanisms responsible for plaque calcification and how calcification impacts plaque stability remain debated. Tissue-nonspecific alkaline phosphatase (TNAP) recently emerged as a promising therapeutic target to block cardiovascular calcification. In this study, we sought to investigate the effect of the recently developed TNAP inhibitor SBI-425 on atherosclerosis plaque calcification and progression. TNAP levels were investigated in ApoE-deficient mice fed a high-fat diet from 10 weeks of age and in plaques from the human ECLAGEN biocollection (101 calcified and 14 non-calcified carotid plaques). TNAP was inhibited in mice using SBI-425 administered from 10 to 25 weeks of age, and in human vascular smooth muscle cells (VSMCs) with MLS-0038949. Plaque calcification was imaged in vivo with 18F-NaF-PET/CT, ex vivo with osteosense, and in vitro with alizarin red. Bone architecture was determined with µCT. TNAP activation preceded and predicted calcification in human and mouse plaques, and TNAP inhibition prevented calcification in human VSMCs and in ApoE-deficient mice. More unexpectedly, TNAP inhibition reduced the blood levels of cholesterol and triglycerides, and protected mice from atherosclerosis, without impacting the skeletal architecture. Metabolomics analysis of liver extracts identified phosphocholine as a substrate of liver TNAP, who's decreased dephosphorylation upon TNAP inhibition likely reduced the release of cholesterol and triglycerides into the blood. Systemic inhibition of TNAP protects from atherosclerosis, by ameliorating dyslipidemia, and preventing plaque calcification.


Asunto(s)
Aterosclerosis , Calcinosis , Dislipidemias , Placa Aterosclerótica , Ratones , Humanos , Animales , Fosfatasa Alcalina , Músculo Liso Vascular , Tomografía Computarizada por Tomografía de Emisión de Positrones , Aterosclerosis/etiología , Aterosclerosis/prevención & control , Apolipoproteínas E , Triglicéridos
14.
Mol Neurobiol ; 59(12): 7278-7292, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36175823

RESUMEN

Astrocytes display an active, dual, and controversial role in multiple sclerosis (MS), a chronic inflammatory demyelination disorder. However, mesenchymal stem cells (MSCs) can affect myelination in demyelinating disorders. This study aimed to investigate the effect of single and combination therapies of astrocyte ablation and MSC transplantation on remyelination in the cuprizone (CPZ) model of MS. C57BL/6 mice were fed 0.2% CPZ diet for 12 weeks. Astrocytes were ablated twice by L-a-aminoadipate (L-AAA) at the beginning of weeks 13 and 14 whereas MSCs were injected in the corpus callosum at the beginning of week 13. Motor coordination and balance were assessed through rotarod test whereas myelin content was evaluated by Luxol-fast blue (LFB) staining and transmission electron microscopy (TEM). Glial cells were assessed by immunofluorescence staining while mRNA expression was evaluated by quantitative real-time PCR. Combination treatment of ablation of astrocytes and MSC transplantation (CPZ + MSC + L-AAA) significantly decreased motor coordination deficits better than single treatments (CPZ + MSCs or CPZ + L-AAA), in comparison to CPZ mice. In addition, L-AAA and MSCs treatment significantly enhanced remyelination compared to CPZ group. Moreover, combination therapy caused a significant decrease in the number of GFAP+ and Iba-1+ cells, whereas oligodendrocytes were significantly increased in comparison to CPZ mice. Finally, MSC administration resulted in a significant upregulation of BDNF and NGF mRNA expression levels. Our data indicate that transient ablation of astrocytes along with MSCs treatment improve remyelination through enhancing oligodendrocytes and attenuating gliosis in a chronic demyelinating mouse model of MS.


Asunto(s)
Enfermedades Desmielinizantes , Trasplante de Células Madre Mesenquimatosas , Esclerosis Múltiple , Remielinización , Animales , Ratones , Cuprizona/toxicidad , Astrocitos/metabolismo , Enfermedades Desmielinizantes/inducido químicamente , Enfermedades Desmielinizantes/terapia , Enfermedades Desmielinizantes/metabolismo , Ratones Endogámicos C57BL , Vaina de Mielina/metabolismo , Modelos Animales de Enfermedad , Esclerosis Múltiple/terapia , Esclerosis Múltiple/metabolismo , ARN Mensajero/metabolismo
15.
Pharmacol Ther ; 237: 108257, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35908611

RESUMEN

CXCR1 and CXCR2 chemokine receptors, mainly activated by interleukin 8 (IL-8 or CXCL8), are expressed in a variety of cells including, leukocytes, fibroblasts, endothelial cells, and smooth muscle cells. Numerous intracellular mediators are activated by these G protein-coupled receptors based on several factors, including the nature of the ligand, its concentration, and the binding sites with the receptor, levels of the receptor, cell type, and stimulatory environment. Much focus is currently being directed towards CXCR1/2 inhibitors, as these receptors primarily induce the chemotaxis of leukocytes, especially neutrophils, during inflammation, a key process in cardiovascular disease (CVD) progression. CXCR1/2 inhibitors show beneficial effects in various animal models of CVD. These effects include reducing the atherosclerotic plaque area, improving the serum lipid profile, attenuation of the damage following ischemia-reperfusion, the regulation of blood pressure, and the restriction of cardiac remodeling. Based on these encouraging results, testing CXCR1/2 inhibitors in clinical trials could be of a great importance to limit the inflammatory complications associated with CVDs.


Asunto(s)
Enfermedades Cardiovasculares , Receptores de Interleucina-8B , Animales , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/metabolismo , Células Endoteliales/metabolismo , Humanos , Neutrófilos , Receptores de Interleucina-8A/metabolismo , Receptores de Interleucina-8B/metabolismo
16.
Mutat Res Rev Mutat Res ; 789: 108400, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35690409

RESUMEN

Xeroderma pigmentosum group C protein (XPC) acts as a DNA damage recognition factor for bulky adducts and as an initiator of global genome nucleotide excision repair (GG-NER). Novel insights have shown that the role of XPC is not limited to NER, but is also implicated in DNA damage response (DDR), as well as in cell fate decisions upon stress. Moreover, XPC has a proteolytic role through its interaction with p53 and casp-2S. XPC is also able to determine cellular outcomes through its interaction with downstream proteins, such as p21, ARF, and p16. XPC interactions with effector proteins may drive cells to various fates such as apoptosis, senescence, or tumorigenesis. In this review, we explore XPC's involvement in different molecular pathways in the cell and suggest that XPC can be considered not only as a genomic caretaker and gatekeeper but also as a tumor suppressor and cellular-fate decision maker. These findings envisage that resistance to cell death, induced by DNA-damaging therapeutics, in highly prevalent P53-deficent tumors might be overcome through new therapeutic approaches that aim to activate XPC in these tumors. Moreover, this review encourages care providers to consider XPC status in cancer patients before chemotherapy in order to improve the chances of successful treatment and enhance patients' survival.


Asunto(s)
Neoplasias , Proteína p53 Supresora de Tumor , Linaje de la Célula , ADN/metabolismo , Daño del ADN/genética , Reparación del ADN/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Humanos , Neoplasias/genética , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
17.
Cancers (Basel) ; 14(10)2022 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35626090

RESUMEN

Acute myeloid leukemia (AML) is characterized by the accumulation of undifferentiated blast cells in the bone marrow and blood. In most cases of AML, relapse frequently occurs due to resistance to chemotherapy. Compelling research results indicate that drug resistance in cancer cells is highly dependent on the intracellular levels of reactive oxygen species (ROS). Modulating ROS levels is therefore a valuable strategy to overcome the chemotherapy resistance of leukemic cells. In this study, we evaluated the efficiency of diphenyleneiodonium (DPI)-a well-known inhibitor of ROS production-in targeting AML cells. Results showed that although inhibiting cytoplasmic ROS production, DPI also triggered an increase in the mitochondrial ROS levels, caused by the disruption of the mitochondrial respiratory chain. We also demonstrated that DPI blocks mitochondrial oxidative phosphorylation (OxPhos) in a dose-dependent manner, and that AML cells with high OxPhos status are highly sensitive to treatment with DPI, which synergizes with the chemotherapeutic agent cytarabine (Ara-C). Thus, our results suggest that targeting mitochondrial function with DPI might be exploited to target AML cells with high OxPhos status.

18.
Expert Rev Mol Med ; 24: e24, 2022 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-35570582

RESUMEN

There is increasing evidence that glioblastoma, a highly aggressive brain tumour, originates from a neural stem cell (NSC) located in the subventricular zone (SVZ) of the lateral cerebral ventricle. Using the most advanced in vivo imaging techniques, Gengatharan and colleagues recently identified a day/night difference in the adult SVZ-NSC division. They reported that the circadian melatonin rhythm and its receptor control the day/night difference in NSC division with high mitotic activity during the day and low activity at night. Expression of melatonin and its receptor diminishes during ageing, which eliminates the regulatory effect of melatonin on NSC mitosis. Moreover, the circadian melatonin rhythm is dampened by light-at-night with the potential of altering the circadian mitotic cycle of NSC in the SVZ. Also, men with a lower melatonin amplitude than women exhibit a 60% higher rate of glioblastoma incidence. Given that ageing contributes significantly to glioblastoma initiation and progression, we suggest that the decline in circadian melatonin synthesis and release as well as its receptors in the SVZ, which also diminish with an ageing act in concert with other factors to facilitate glioblastoma initiation and growth.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Melatonina , Células-Madre Neurales , Adulto , Neoplasias Encefálicas/patología , Femenino , Glioblastoma/patología , Humanos , Ventrículos Laterales/patología , Masculino , Células-Madre Neurales/patología
19.
Front Immunol ; 13: 862316, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35355991

RESUMEN

We recently showed that melatonin ameliorates the severity of experimental autoimmune encephalomyelitis (EAE), an animal model of MS. However, efficiency of melatonin therapy was associated with side effects, manifested by slowing down of remyelination, through increasing the inhibitory effects of brain pyruvate dehydrogenase kinase-4 (PDK-4) on pyruvate dehydrogenase complex (PDC), a key enzyme in fatty acid (FA) synthesis during remyelination. In this study, we investigated the metabolic profile of FA synthesis using combination therapy of melatonin and diisopropylamine dichloroacetate (DADA), a PDK4 inhibitor, in EAE mice. Disease progression was monitored by recording the disability scores. Immunological, oligodendrogenesis and metabolic factors were also evaluated. Results showed that combination therapy of melatonin and DADA significantly reduced EAE disability scores, compared to melatonin, whereas DADA alone did not have any effect. In addition, co-therapy inhibited pro-inflammatory while increasing anti-inflammatory cytokines, significantly better than melatonin alone. Moreover, administration of combination drugs recovered the declined expression of oligodendrocytic markers in EAE, more potently than melatonin. Furthermore, co-therapy affected cerebral energy metabolism by significantly reducing lactate levels while increasing N-acetylaspartate (NAA) and 3-hydroxy-3-methyl-glutaryl-coenzyme-A reductase (HMGCR) levels. Finally, while melatonin increased lactate and PDK4 expression levels and greatly reduced PDC activity, co-therapy significantly restored PDC function while reducing the lactate levels. In summary, administration of melatonin with DADA increased the efficiency of melatonin treatment by eliminating the inhibitory effects of PDK4 on PDC's function, a critical step for proper FA synthesis during remyelination.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Melatonina , Esclerosis Múltiple , Remielinización , Animales , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Ácido Láctico , Melatonina/farmacología , Ratones , Esclerosis Múltiple/complicaciones , Esclerosis Múltiple/tratamiento farmacológico , Complejo Piruvato Deshidrogenasa
20.
Neurochem Int ; 154: 105301, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35121011

RESUMEN

Traumatic Brain Injury (TBI) is one of the leading causes of death and disability worldwide. Aspirin (ASA) and clopidogrel (CLOP) are antiplatelet agents that inhibit platelet aggregation. They are implicated in worsening the intracerebral haemorrhage (ICH) risk post-TBI. However, antiplatelet drugs may also exert a neuroprotective effect post-injury. We determined the impact of ASA and CLOP treatment, alone or in combination, on ICH and brain damage in an experimental rat TBI model. We assessed changes in platelet aggregation and measured serum thromboxane by enzyme immune assay. We also explored a panel of brain damage and apoptosis biomarkers by immunoblotting. Rats were treated with ASA and/or CLOP for 48 h prior to TBI and sacrificed 48 h post-injury. In rats treated with antiplatelet agents prior to TBI, platelet aggregation was completely inhibited, and serum thromboxane was significantly decreased, compared to the TBI group without treatment. TBI increases UCHL-1 and GFAP, but decreases hexokinase expression compared to the non-injured controls. All groups treated with antiplatelet drugs prior to TBI had decreased UCH-L1 and GFAP serum levels compared to the TBI untreated group. Furthermore, the ASA and CLOP single treatments increased the hexokinase serum levels. We confirmed that αII-spectrin cleavage increased post-TBI, with the highest cleavage detected in CLOP-treated rats. Aspirin and/or CLOP treatment prior to TBI is a double-edged sword that exerts a dual effect post-injury. On one hand, ASA and CLOP single treatments increase the post-TBI ICH risk, with a further detrimental effect from the ASA + CLOP treatment. On the other hand, ASA and/or CLOP treatments are neuroprotective and result in a favourable profile of TBI injury markers. The ICH risk and the neuroprotection benefits from antiplatelet therapy should be weighed against each other to ameliorate the management of TBI patients.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Lesiones Encefálicas , Animales , Aspirina/farmacología , Aspirina/uso terapéutico , Lesiones Encefálicas/tratamiento farmacológico , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Clopidogrel/farmacología , Humanos , Inhibidores de Agregación Plaquetaria/farmacología , Inhibidores de Agregación Plaquetaria/uso terapéutico , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA