Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Pharmacol Exp Ther ; 387(2): 188-203, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37679046

RESUMEN

Pompe disease is a rare glycogen storage disorder caused by a deficiency in the lysosomal enzyme acid α-glucosidase, which leads to muscle weakness, cardiac and respiratory failure, and early mortality. Alglucosidase alfa, a recombinant human acid α-glucosidase, was the first approved treatment of Pompe disease, but its uptake into skeletal muscle via the cation-independent mannose-6-phosphate (M6P) receptor (CIMPR) is limited. Avalglucosidase alfa has received marketing authorization in several countries for infantile-onset and/or late-onset Pompe disease. This recently approved enzyme replacement therapy (ERT) was glycoengineered to maximize CIMPR binding through high-affinity interactions with ∼7 bis-M6P moieties. Recently, small molecules like the glucosylceramide synthase inhibitor miglustat were reported to increase the stability of recombinant human acid α-glucosidase, and it was suggested that an increased serum half-life would result in better glycogen clearance. Here, the effects of miglustat on alglucosidase alfa and avalglucosidase alfa stability, activity, and efficacy in Pompe mice were evaluated. Although miglustat increased the stability of both enzymes in fluorescent protein thermal shift assays and when incubated in neutral pH buffer over time, it reduced their enzymatic activity by ∼50%. Improvement in tissue glycogen clearance and transcriptional dysregulation in Pompe mice correlated with M6P levels but not with miglustat coadministration. These results further substantiate the crucial role of CIMPR binding in lysosomal targeting of ERTs. SIGNIFICANCE STATEMENT: This work describes important new insights into the treatment of Pompe disease using currently approved enzyme replacement therapies (ERTs) coadministered with miglustat. Although miglustat increased the stability of ERTs in vitro, there was no positive impact to glycogen clearance and transcriptional correction in Pompe mice. However, increasing mannose-6-phosphate levels resulted in increased cell uptake in vitro and increased glycogen clearance and transcriptional correction in Pompe mice, further underscoring the crucial role of cation-independent mannose-6-phosphate receptor-mediated lysosomal targeting for ERTs.

2.
J Clin Invest ; 132(1)2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34981776

RESUMEN

Efficient sarcolemmal repair is required for muscle cell survival, with deficits in this process leading to muscle degeneration. Lack of the sarcolemmal protein dysferlin impairs sarcolemmal repair by reducing secretion of the enzyme acid sphingomyelinase (ASM), and causes limb girdle muscular dystrophy 2B (LGMD2B). The large size of the dysferlin gene poses a challenge for LGMD2B gene therapy efforts aimed at restoring dysferlin expression in skeletal muscle fibers. Here, we present an alternative gene therapy approach targeting reduced ASM secretion, the consequence of dysferlin deficit. We showed that the bulk endocytic ability is compromised in LGMD2B patient cells, which was addressed by extracellularly treating cells with ASM. Expression of secreted human ASM (hASM) using a liver-specific adeno-associated virus (AAV) vector restored membrane repair capacity of patient cells to healthy levels. A single in vivo dose of hASM-AAV in the LGMD2B mouse model restored myofiber repair capacity, enabling efficient recovery of myofibers from focal or lengthening contraction-induced injury. hASM-AAV treatment was safe, attenuated fibro-fatty muscle degeneration, increased myofiber size, and restored muscle strength, similar to dysferlin gene therapy. These findings elucidate the role of ASM in dysferlin-mediated plasma membrane repair and to our knowledge offer the first non-muscle-targeted gene therapy for LGMD2B.


Asunto(s)
Dependovirus , Terapia Genética , Vectores Genéticos , Hígado/enzimología , Distrofia Muscular de Cinturas , Esfingomielina Fosfodiesterasa , Animales , Línea Celular Transformada , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Mutantes , Distrofia Muscular de Cinturas/enzimología , Distrofia Muscular de Cinturas/genética , Distrofia Muscular de Cinturas/terapia , Esfingomielina Fosfodiesterasa/biosíntesis , Esfingomielina Fosfodiesterasa/genética
3.
J Inherit Metab Dis ; 41(2): 231-238, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29110178

RESUMEN

Fabry disease is a glycosphingolipidosis caused by deficient activity of α-galactosidase A; it is one of a few diseases that are associated with priapism, an abnormal prolonged erection of the penis. The goal of this study was to investigate the pathogenesis of Fabry disease-associated priapism in a mouse model of the disease. We found that Fabry mice develop late-onset priapism. Neuronal nitric oxide synthase (nNOS), which was predominantly present as the 120-kDa N-terminus-truncated form, was significantly upregulated in the penis of 18-month-old Fabry mice compared to wild type controls (~fivefold). Endothelial NOS (eNOS) was also upregulated (~twofold). NO level in penile tissues of Fabry mice was significantly higher than wild type controls at 18 months. Gene transfer-mediated enzyme replacement therapy reversed abnormal nNOS expression in the Fabry mouse penis. The penile nNOS level was restored by antiandrogen treatment, suggesting that hyperactive androgen receptor signaling in Fabry mice may contribute to nNOS upregulation. However, the phosphodiesterase-5A expression level and the adenosine content in the penis, which are known to play roles in the development of priapism in other etiologies, were unchanged in Fabry mice. In conclusion, these data suggested that increased nNOS (and probably eNOS) content and the consequential elevated NO production and high arterial blood flow in the penis may be the underlying mechanism of priapism in Fabry mice. Furthermore, in combination with previous findings, this study suggested that regulation of NOS expression is susceptible to α-galactosidase A deficiency, and this may represent a general pathogenic mechanism of Fabry vasculopathy.


Asunto(s)
Enfermedad de Fabry/complicaciones , Óxido Nítrico Sintasa de Tipo III/metabolismo , Óxido Nítrico Sintasa de Tipo I/metabolismo , Erección Peniana , Pene/enzimología , Priapismo/etiología , Animales , Modelos Animales de Enfermedad , Terapia de Reemplazo Enzimático/métodos , Enfermedad de Fabry/enzimología , Enfermedad de Fabry/fisiopatología , Enfermedad de Fabry/terapia , Terapia Genética/métodos , Masculino , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Óxido Nítrico/metabolismo , Pene/fisiopatología , Priapismo/enzimología , Priapismo/fisiopatología , Priapismo/terapia , Flujo Sanguíneo Regional , Transducción de Señal , Regulación hacia Arriba , alfa-Galactosidasa/biosíntesis , alfa-Galactosidasa/genética
4.
Hum Mol Genet ; 23(3): 730-48, 2014 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-24057669

RESUMEN

The GM2 gangliosidoses are progressive neurodegenerative disorders due to defects in the lysosomal ß-N-acetylhexosaminidase system. Accumulation of ß-hexosaminidases A and B substrates is presumed to cause this fatal condition. An authentic mouse model of Sandhoff disease (SD) with pathological characteristics resembling those noted in infantile GM2 gangliosidosis has been described. We have shown that expression of ß-hexosaminidase by intracranial delivery of recombinant adeno-associated viral vectors to young adult SD mice can prevent many features of the disease and extends lifespan. To investigate the nature of the neurological injury in GM2 gangliosidosis and the extent of its reversibility, we have examined the evolution of disease in the SD mouse; we have moreover explored the effects of gene transfer delivered at key times during the course of the illness. Here we report greatly increased survival only when the therapeutic genes are expressed either before the disease is apparent or during its early manifestations. However, irrespective of when treatment was administered, widespread and abundant expression of ß-hexosaminidase with consequent clearance of glycoconjugates, α-synuclein and ubiquitinated proteins, and abrogation of inflammatory responses and neuronal loss was observed. We also show that defects in myelination occur in early life and cannot be easily resolved when treatment is given to the adult brain. These results indicate that there is a limited temporal opportunity in which function and survival can be improved-but regardless of resolution of the cardinal pathological features of GM2 gangliosidosis, a point is reached when functional deterioration and death cannot be prevented.


Asunto(s)
Encéfalo/enzimología , Vectores Genéticos/farmacología , Enfermedad de Sandhoff/genética , Enfermedad de Sandhoff/patología , Enfermedad de Sandhoff/terapia , Enfermedad de Tay-Sachs/patología , beta-N-Acetilhexosaminidasas/genética , Animales , Encéfalo/efectos de los fármacos , Dependovirus/genética , Modelos Animales de Enfermedad , Gangliósido G(M2)/genética , Gangliósido G(M2)/metabolismo , Terapia Genética/métodos , Vectores Genéticos/administración & dosificación , Humanos , Inyecciones Intralesiones , Ratones , Ratones Noqueados , Ratones Transgénicos , Enfermedad de Sandhoff/mortalidad , Ubiquitina/metabolismo , alfa-Sinucleína/metabolismo , beta-N-Acetilhexosaminidasas/metabolismo
5.
Mol Ther ; 20(8): 1489-500, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22453766

RESUMEN

The GM2 gangliosidoses are fatal lysosomal storage diseases principally affecting the brain. Absence of ß-hexosaminidase A and B activities in the Sandhoff mouse causes neurological dysfunction and recapitulates the acute Tay-Sachs (TSD) and Sandhoff diseases (SD) in infants. Intracranial coinjection of recombinant adeno-associated viral vectors (rAAV), serotype 2/1, expressing human ß-hexosaminidase α (HEXA) and ß (HEXB) subunits into 1-month-old Sandhoff mice gave unprecedented survival to 2 years and prevented disease throughout the brain and spinal cord. Classical manifestations of disease, including spasticity-as opposed to tremor-ataxia-were resolved by localized gene transfer to the striatum or cerebellum, respectively. Abundant biosynthesis of ß-hexosaminidase isozymes and their global distribution via axonal, perivascular, and cerebrospinal fluid (CSF) spaces, as well as diffusion, account for the sustained phenotypic rescue-long-term protein expression by transduced brain parenchyma, choroid plexus epithelium, and dorsal root ganglia neurons supplies the corrective enzyme. Prolonged survival permitted expression of cryptic disease in organs not accessed by intracranial vector delivery. We contend that infusion of rAAV into CSF space and intraparenchymal administration by convection-enhanced delivery at a few strategic sites will optimally treat neurodegeneration in many diseases affecting the nervous system.


Asunto(s)
Gangliosidosis GM2/enzimología , Gangliosidosis GM2/terapia , Hexosaminidasa A/metabolismo , Hexosaminidasa B/metabolismo , Adenoviridae/genética , Animales , Gangliosidosis GM2/genética , Vectores Genéticos/genética , Hexosaminidasa A/genética , Hexosaminidasa B/genética , Humanos , Ratones , Ratones Noqueados
6.
Hum Mol Genet ; 20(22): 4371-80, 2011 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-21852247

RESUMEN

Sandhoff disease, a GM2 gangliosidosis caused by a deficiency in ß-hexosaminidase, is characterized by progressive neurodegeneration. Although loss of neurons in association with lysosomal storage of glycosphingolipids occurs in patients with this disease, the molecular pathways that lead to the accompanying neurological defects are unclear. Using an authentic murine model of GM2 gangliosidosis, we examined the pattern of neuronal loss in the central nervous system and investigated the effects of gene transfer using recombinant adeno-associated viral vectors expressing ß-hexosaminidase subunits (rAAV2/1-Hex). In 4-month-old Sandhoff mice with neurological deficits, cells staining positively for the apoptotic signature in the TUNEL reaction were found in the ventroposterior medial and ventroposterior lateral (VPM/VPL) nuclei of the thalamus. There was progressive loss of neuronal density in this region with age. Comparable loss of neuronal density was identified in the lateral vestibular nucleus of the brainstem and a small but statistically significant loss was present in the ventral spinal cord. Loss of neurons was not detected in other regions that were analysed. Administration of rAAV2/1-Hex into the brain of Sandhoff mice prevented the decline in neuronal density in the VPM/VPL. Preservation of neurons in the VPM/VPL was variable at the humane endpoint in treated animals, but correlated directly with increased lifespan. Loss of neurons was localized to only a few regions in the Sandhoff brain and was prevented by rAAV-mediated transfer of ß-hexosaminidase gene function at considerable distances from the site of vector administration.


Asunto(s)
Encéfalo/metabolismo , Encéfalo/patología , Dependovirus/genética , Vectores Genéticos/genética , Neuronas/patología , Enfermedad de Sandhoff/terapia , beta-N-Acetilhexosaminidasas/metabolismo , Animales , Apoptosis/genética , Apoptosis/fisiología , Etiquetado Corte-Fin in Situ , Ratones , Neuronas/metabolismo , Enfermedad de Sandhoff/enzimología , Enfermedad de Sandhoff/metabolismo , beta-N-Acetilhexosaminidasas/genética
7.
Exp Neurol ; 231(2): 261-71, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21777586

RESUMEN

One treatment approach for lysosomal storage diseases (LSDs) is the systemic infusion of recombinant enzyme. Although this enzyme replacement is therapeutic for the viscera, many LSDs have central nervous system (CNS) components that are not adequately treated by systemic enzyme infusion. Direct intracerebroventricular (ICV) infusion of a high concentration of recombinant human acid sphingomyelinase (rhASM) into the CNS over a prolonged time frame (hours) has shown therapeutic efficacy in a mouse model of Niemann-Pick A (NP/A) disease. To evaluate whether such an approach would translate to a larger brain, rhASM was infused into the lateral ventricles of both rats and Rhesus macaques, and the resulting distribution of enzyme characterized qualitatively and quantitatively. In both species, ICV infusion of rhASM resulted in parenchymal distribution of enzyme at levels that were therapeutic in the NP/A mouse model. Enzyme distribution was global in nature and exhibited a relatively steep gradient from the cerebrospinal fluid compartment to the inner parenchyma. Additional optimization of an ICV delivery approach may provide a therapeutic option for LSDs with neurologic involvement.


Asunto(s)
Encéfalo/metabolismo , Proteínas Recombinantes/farmacocinética , Esfingomielina Fosfodiesterasa/farmacocinética , Animales , Encéfalo/enzimología , Femenino , Infusiones Intraventriculares , Macaca mulatta , Masculino , Ratas , Ratas Sprague-Dawley , Proteínas Recombinantes/administración & dosificación , Esfingomielina Fosfodiesterasa/administración & dosificación
8.
Mol Ther ; 19(11): 1999-2011, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21712814

RESUMEN

In mice, liver-restricted expression of lysosomal enzymes from adeno-associated viral serotype 8 (AAV8) vectors results in reduced antibodies to the expressed proteins. To ask whether this result might translate to patients, nonhuman primates (NHPs) were injected systemically with AAV8 encoding α-galactosidase A (α-gal). As in mice, sustained expression in monkeys attenuated antibody responses to α-gal. However, this effect was not robust, and sustained α-gal levels were 1-2 logs lower than those achieved in male mice at the same vector dose. Because our mouse studies had shown that antibody levels were directly related to expression levels, several strategies were evaluated to increase expression in monkeys. Unlike mice, expression in monkeys did not respond to androgens. Local delivery to the liver, immune suppression, a self-complementary vector and pharmacologic approaches similarly failed to increase expression. While equivalent vector copies reached mouse and primate liver and there were no apparent differences in vector form, methylation or deamination, transgene expression was limited at the mRNA level in monkeys. These results suggest that compared to mice, transcription from an AAV8 vector in monkeys can be significantly reduced. They also suggest some current limits on achieving clinically useful antibody reduction and therapeutic benefit for lysosomal storage diseases using a systemic AAV8-based approach.


Asunto(s)
Dependovirus/genética , Vectores Genéticos/administración & dosificación , Tolerancia Inmunológica , Inmunidad Humoral , Hígado/metabolismo , alfa-Galactosidasa/genética , Andrógenos/farmacología , Animales , Metilación de ADN , Desaminación , Dependovirus/inmunología , Dosificación de Gen , Regulación de la Expresión Génica/efectos de los fármacos , Vectores Genéticos/inmunología , Humanos , Inyecciones , Macaca mulatta , Masculino , Ratones , Ratones Endogámicos C57BL , Transcripción Genética , alfa-Galactosidasa/inmunología , alfa-Galactosidasa/metabolismo
9.
J Gene Med ; 13(6): 324-32, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21674735

RESUMEN

BACKGROUND: The secretory form of acid sphingomyelinase (ASM) is postulated to play a key role in the retention and aggregation of lipoproteins in the subendothelial space of the arterial wall by converting sphingomyelin in lipoproteins into ceramide. The present study aimed to determine whether the level of circulating ASM activity affects lesion development in mouse model of atherosclerosis. METHODS: Apolipoprotein E deficient (ApoE(-/-) ) mice were injected intravenously with a recombinant adeno-associated virus (AAV8-ASM) that constitutively expressed high levels of human ASM in liver and plasma. RESULTS: Plasma sphingomyelin levels were reduced at early but not later time points after the administration of AAV8-ASM despite persistently elevated circulating ASM. No change in serum lipoprotein levels was observed. Thirteen or 17 weeks after the administration of AAV8-ASM, the amount of plaque formation in the aortic sinus was comparable to that of mice treated with a control AAV. CONCLUSIONS: Unexpectedly, the lesion area of the entire aorta was reduced significantly in the AAV8-ASM virus-treated group. Hepatic expression and secretion of ASM into the circulation did not accelerate or exacerbate, but rather decreased, lesion formation in ApoE(-/-) mice. Thus, plasma ASM activity does not appear to be rate limiting for plaque formation during atherogenesis.


Asunto(s)
Aorta/patología , Apolipoproteínas E/genética , Dependovirus/metabolismo , Placa Aterosclerótica/enzimología , Esfingomielina Fosfodiesterasa/metabolismo , Análisis de Varianza , Animales , Técnicas Histológicas , Humanos , Lipoproteínas/sangre , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Placa Aterosclerótica/patología , Esfingomielina Fosfodiesterasa/administración & dosificación , Esfingomielina Fosfodiesterasa/sangre
10.
Mol Ther ; 18(11): 1983-94, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20736932

RESUMEN

Liver-directed gene therapy with adeno-associated virus (AAV) vectors effectively treats mouse models of lysosomal storage diseases (LSDs). We asked whether these results were likely to translate to patients. To understand to what extent preexisting anti-AAV8 antibodies could impede AAV8-mediated liver transduction in primates, commonly preexposed to AAV, we quantified the effects of preexisting antibodies on liver transduction and subsequent transgene expression in mouse and nonhuman primate (NHP) models. Using the highest viral dose previously reported in a clinical trial, passive transfer of NHP sera containing relatively low anti-AAV8 titers into mice blocked liver transduction, which could be partially overcome by increasing vector dose tenfold. Based on this and a survey of anti-AAV8 titers in 112 humans, we predict that high-dose systemic gene therapy would successfully transduce liver in >50% of human patients. However, although high-dose AAV8 administration to mice and monkeys with equivalent anti-AAV8 titers led to comparable liver vector copy numbers, the resulting transgene expression in primates was ~1.5-logs lower than mice. This suggests vector fate differs in these species and that strategies focused solely on overcoming preexisting vector-specific antibodies may be insufficient to achieve clinically meaningful expression levels of LSD genes using a liver-directed gene therapy approach in patients.


Asunto(s)
Dependovirus/genética , Terapia Genética , Hepatocitos/inmunología , Enfermedades por Almacenamiento Lisosomal/terapia , Transgenes/fisiología , alfa-Galactosidasa/sangre , Animales , Anticuerpos Neutralizantes/inmunología , Western Blotting , Vectores Genéticos/administración & dosificación , Células HeLa , Hepatocitos/metabolismo , Humanos , Enfermedades por Almacenamiento Lisosomal/genética , Enfermedades por Almacenamiento Lisosomal/inmunología , Macaca fascicularis , Macaca mulatta , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Plasmaféresis , Biosíntesis de Proteínas , ARN Mensajero/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , alfa-Galactosidasa/genética
11.
Mol Ther ; 18(9): 1584-91, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20551907

RESUMEN

Due to the lack of acid alpha-glucosidase (GAA) activity, Pompe mice develop glycogen storage pathology and progressive skeletal muscle dysfunction with age. Applying either gene or enzyme therapy to reconstitute GAA levels in older, symptomatic Pompe mice effectively reduces glycogen storage in skeletal muscle but provides only modest improvements in motor function. As strategies to stimulate muscle hypertrophy, such as by myostatin inhibition, have been shown to improve muscle pathology and strength in mouse models of muscular dystrophy, we sought to determine whether these benefits might be similarly realized in Pompe mice. Administration of a recombinant adeno-associated virus serotype 8 vector encoding follistatin, an inhibitor of myostatin, increased muscle mass and strength but only in Pompe mice that were treated before 10 months of age. Younger Pompe mice showed significant muscle fiber hypertrophy in response to treatment with follistatin, but maximal gains in muscle strength were achieved only when concomitant GAA administration reduced glycogen storage in the affected muscles. Despite increased grip strength, follistatin treatment failed to improve rotarod performance. These findings highlight the importance of treating Pompe skeletal muscle before pathology becomes irreversible, and suggest that adjunctive therapies may not be effective without first clearing skeletal muscle glycogen storage with GAA.


Asunto(s)
Folistatina/metabolismo , Enfermedad del Almacenamiento de Glucógeno Tipo II/terapia , Glucógeno/metabolismo , Músculo Esquelético/metabolismo , Animales , Índice de Masa Corporal , Dependovirus/genética , Modelos Animales de Enfermedad , Folistatina/genética , Vectores Genéticos/genética , Enfermedad del Almacenamiento de Glucógeno Tipo II/genética , Enfermedad del Almacenamiento de Glucógeno Tipo II/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , alfa-Glucosidasas/genética , alfa-Glucosidasas/metabolismo
12.
Mol Ther ; 17(6): 954-63, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19277015

RESUMEN

Improving the delivery of therapeutics to disease-affected tissues can increase their efficacy and safety. Here, we show that chemical conjugation of a synthetic oligosaccharide harboring mannose 6-phosphate (M6P) residues onto recombinant human acid alpha-glucosidase (rhGAA) via oxime chemistry significantly improved its affinity for the cation-independent mannose 6-phosphate receptor (CI-MPR) and subsequent uptake by muscle cells. Administration of the carbohydrate-remodeled enzyme (oxime-neo-rhGAA) into Pompe mice resulted in an approximately fivefold higher clearance of lysosomal glycogen in muscles when compared to the unmodified counterpart. Importantly, treatment of immunotolerized Pompe mice with oxime-neo-rhGAA translated to greater improvements in muscle function and strength. Treating older, symptomatic Pompe mice also reduced tissue glycogen levels but provided only modest improvements in motor function. Examination of the muscle pathology suggested that the poor response in the older animals might have been due to a reduced regenerative capacity of the skeletal muscles. These findings lend support to early therapeutic intervention with a targeted enzyme as important considerations in the management of Pompe disease.


Asunto(s)
Enfermedad del Almacenamiento de Glucógeno Tipo II/tratamiento farmacológico , Manosafosfatos/química , Oligosacáridos/química , Ingeniería de Proteínas/métodos , alfa-Glucosidasas/metabolismo , alfa-Glucosidasas/uso terapéutico , Animales , Modelos Animales de Enfermedad , Glucógeno/metabolismo , Enfermedad del Almacenamiento de Glucógeno Tipo II/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Unión Proteica , Receptor IGF Tipo 2/metabolismo , alfa-Glucosidasas/química , alfa-Glucosidasas/genética , alfa-Glucosidasas/farmacología
13.
Mol Genet Metab ; 97(1): 35-42, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19231265

RESUMEN

Systemic administration of recombinant acid sphingomyelinase (rhASM) into ASM deficient mice (ASMKO) results in hydrolysis of the abnormal storage of sphingomyelin in lysosomes of the liver, spleen and lung. However, the efficiency with which the substrate is cleared from the lung, particularly the alveolar macrophages, appears to be lower than from the other visceral tissues. To determine if delivery of rhASM into the air spaces of the lung could enhance clearance of pulmonary sphingomyelin, enzyme was administered to ASMKO mice by intranasal instillation. Treatment resulted in a significant and dose-dependent reduction in sphingomyelin levels in the lung. Concomitant with this reduction in substrate levels was a decrease in the amounts of the pro-inflammatory cytokine, MIP-1alpha, in the bronchoalveolar lavage fluids and an improvement in lung pathology. Maximal reduction of lung sphingomyelin levels was observed at 7 days post-treatment. However, reaccumulation of the substrate was noted starting at day 14 suggesting that repeated treatments will be necessary to effect a sustained reduction in sphingomyelin levels. In addition to reducing the storage abnormality in the lung, intranasal delivery of rhASM also resulted in clearance of the substrate from the liver and spleen. Hence, pulmonary administration of rhASM may represent an alternative route of delivery to address the visceral pathology associated with ASM deficiency.


Asunto(s)
Pulmón/metabolismo , Lisosomas/metabolismo , Enfermedades de Niemann-Pick/tratamiento farmacológico , Proteínas Recombinantes/uso terapéutico , Esfingomielina Fosfodiesterasa/administración & dosificación , Esfingomielina Fosfodiesterasa/uso terapéutico , Esfingomielinas/metabolismo , Administración Intranasal , Animales , Líquido del Lavado Bronquioalveolar/citología , Modelos Animales de Enfermedad , Femenino , Humanos , Cinética , Hígado/metabolismo , Hígado/patología , Pulmón/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Enfermedades de Niemann-Pick/enzimología , Enfermedades de Niemann-Pick/metabolismo , Enfermedades de Niemann-Pick/patología , Proteínas Recombinantes/administración & dosificación , Esfingomielina Fosfodiesterasa/genética , Bazo/metabolismo , Bazo/patología
14.
Mol Ther ; 16(8): 1400-8, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18545223

RESUMEN

Peripheral neuropathy is a particularly debilitating complication of both type 1 and type 2 diabetes characterized by sensory and motor neuron damage and decreased circulating levels of insulin-like growth factor 1 (IGF-1). Quite often, an early hyperalgesia is followed by hypoalgesia and muscle weakness. Hypoalgesia can lead to significant morbidity for which there is no current treatment. Hyperglycemic, streptozotocin (STZ)-induced rodent models reproduce these symptoms. We investigated whether increasing systemic IGF-1 could improve neuronal function in hyper- and hypoalgesic STZ-treated mice. Increased circulating levels of IGF-1 were achieved by delivering a plasmid or adeno-associated viral (AAV) vector bearing mouse IGF-1 to the liver. Treating mice in the hyperalgesia stage prevented later hypoalgesia. Treating mice in the hypoalgesia stage reversed existing hypoalgesia. This latter effect could be seen by merely restoring IGF-1 serum levels to normalcy, which was possible to achieve by IGF-1 gene therapy or insulin treatment. Sensory nerve functional correction was seen to be correlated with attenuated Schwann cell vacuolization and demyelination in peripheral sensory nerve fibers. A further increase in serum IGF-1 levels with gene therapy also improved motor function, consistent with the observed prevention of both muscle atrophy and peripheral motor nerve fiber demyelination. These results suggest that the restoration of systemic levels of IGF-1 may prove to be a highly effective therapeutic modality for treating diabetic peripheral neuropathy.


Asunto(s)
Neuropatías Diabéticas/terapia , Terapia Genética/métodos , Hiperalgesia/terapia , Factor I del Crecimiento Similar a la Insulina/fisiología , Animales , Peso Corporal/fisiología , Dependovirus/genética , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/fisiopatología , Neuropatías Diabéticas/etiología , Neuropatías Diabéticas/fisiopatología , Modelos Animales de Enfermedad , Vectores Genéticos/genética , Hiperalgesia/inducido químicamente , Hiperalgesia/fisiopatología , Factor I del Crecimiento Similar a la Insulina/genética , Factor I del Crecimiento Similar a la Insulina/metabolismo , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas Motoras/citología , Neuronas Motoras/metabolismo , Neuronas Motoras/fisiología
15.
Hum Gene Ther ; 19(6): 609-21, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18500944

RESUMEN

The availability of a murine model of Pompe disease has enabled an evaluation of the relative merits of various therapeutic paradigms, including gene therapy. We report here that administration of a recombinant adeno-associated virus serotype 8 (AAV8) vector (AAV8/DC190-GAA) encoding human acid alpha-glucosidase (GAA) into presymptomatic Pompe mice resulted in nearly complete correction of the lysosomal storage of glycogen in all the affected muscles. A relatively high dose of AAV8/DC190-GAA was necessary to attain a threshold level of GAA for inducing immunotolerance to the expressed enzyme and for correction of muscle function, coordination, and strength. Administration of AAV8/DC190-GAA into older Pompe mice with overt disease manifestations was also effective at correcting the lysosomal storage abnormality. However, these older mice exhibited only marginal improvements in motor function and no improvement in muscle strength. Examination of histologic sections showed evidence of skeletal muscle degeneration and fibrosis in aged Pompe mice whose symptoms were abated or rescued by early but not late treatment with AAV8/DC190-GAA. These results suggest that AAV8-mediated hepatic expression of GAA was effective at addressing the biochemical and functional deficits in Pompe mice. However, early therapeutic intervention is required to maintain significant muscle function and should be an important consideration in the management and treatment of Pompe disease.


Asunto(s)
Dependovirus , Vectores Genéticos , Enfermedad del Almacenamiento de Glucógeno Tipo II/fisiopatología , Enfermedad del Almacenamiento de Glucógeno Tipo II/terapia , Hígado/enzimología , alfa-Glucosidasas/genética , Animales , Modelos Animales de Enfermedad , Enfermedad del Almacenamiento de Glucógeno Tipo II/complicaciones , Humanos , Glucógeno Hepático/genética , Glucógeno Hepático/metabolismo , Ratones , Ratones Mutantes , Actividad Motora , Músculo Esquelético/patología , Músculo Esquelético/fisiopatología , Enfermedades Musculares/etiología , Enfermedades Musculares/fisiopatología , Enfermedades Musculares/terapia , alfa-Glucosidasas/sangre
16.
Proc Natl Acad Sci U S A ; 104(22): 9505-10, 2007 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-17517638

RESUMEN

Niemann-Pick disease (NPD) is caused by the loss of acid sphingomyelinase (ASM) activity, which results in widespread accumulation of undegraded lipids in cells of the viscera and CNS. In this study, we tested the effect of combination brain and systemic injections of recombinant adeno-associated viral vectors encoding human ASM (hASM) in a mouse model of NPD. Animals treated by combination therapy exhibited high levels of hASM in the viscera and brain, which resulted in near-complete correction of storage throughout the body. This global reversal of pathology translated to normal weight gain and superior recovery of motor and cognitive functions compared to animals treated by either brain or systemic injection alone. Furthermore, animals in the combination group did not generate antibodies to hASM, demonstrating the first application of systemic-mediated tolerization to improve the efficacy of brain injections. All of the animals treated by combination therapy survived in good health to an investigator-selected 54 weeks, whereas the median lifespans of the systemic-alone, brain-alone, or untreated ASM knockout groups were 47, 48, and 34 weeks, respectively. These data demonstrate that combination therapy is a promising therapeutic modality for treating NPD and suggest a potential strategy for treating disease indications that cause both visceral and CNS pathologies.


Asunto(s)
Encéfalo/enzimología , Encéfalo/patología , Dependovirus/genética , Enfermedades de Niemann-Pick/genética , Enfermedades de Niemann-Pick/terapia , Animales , Regulación Enzimológica de la Expresión Génica , Terapia Genética , Vectores Genéticos/genética , Humanos , Ratones , Ratones Noqueados , Enfermedades de Niemann-Pick/enzimología , Enfermedades de Niemann-Pick/patología , Esfingomielina Fosfodiesterasa/deficiencia , Esfingomielina Fosfodiesterasa/genética , Esfingomielina Fosfodiesterasa/metabolismo , Esfingomielinas/metabolismo , Tasa de Supervivencia
17.
Mol Ther ; 15(3): 492-500, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17191071

RESUMEN

The advent of novel adeno-associated virus (AAV) serotype vectors with higher transduction activity has encouraged a re-evaluation of the merits of this delivery platform for a variety of diseases. We report here that administration of a recombinant AAV8-based serotype vector encoding human alpha-galactosidase A into Fabry mice facilitated more rapid and significantly higher levels of production of the enzyme than an AAV2 vector. This translated into improved clearance of globotriaosylceramide, the glycosphingolipid that accumulates in the lysosomes of affected Fabry cells, and to correction of the peripheral neuropathy shown associated with this disease. The higher levels of alpha-galactosidase A expression also allowed for a more rapid induction of immunotolerance to the enzyme. Recombinant AAV8 vectors that facilitated hepatic-restricted expression of high levels of alpha-galactosidase A conferred immunotolerance to the expressed enzyme as early as 30 days post-treatment. Animals expressing lower levels of the hydrolase, such as those treated with an AAV2-based vector or with lower doses of the AAV8-based vector, were also able to develop immunotolerance, but only after a more extended time period. Adoptive transfer of T cells isolated from the spleens of immunotolerized mice suppressed the formation of antibodies in naïve recipient animals, suggesting the possible role of regulatory T cells in effecting this state.


Asunto(s)
Dependovirus/genética , Enfermedad de Fabry/enzimología , Expresión Génica/genética , Hígado/metabolismo , alfa-Galactosidasa/metabolismo , Animales , Anticuerpos/inmunología , Linfocitos T CD4-Positivos/enzimología , Linfocitos T CD4-Positivos/inmunología , Enfermedad de Fabry/genética , Enfermedad de Fabry/patología , Enfermedad de Fabry/terapia , Regulación Enzimológica de la Expresión Génica , Terapia Genética , Vectores Genéticos/genética , Humanos , Tolerancia Inmunológica , Masculino , Ratones , Ratones Endogámicos BALB C , Enfermedades del Sistema Nervioso Periférico/enzimología , Enfermedades del Sistema Nervioso Periférico/genética , Enfermedades del Sistema Nervioso Periférico/patología , Enfermedades del Sistema Nervioso Periférico/terapia , alfa-Galactosidasa/genética , alfa-Galactosidasa/inmunología
18.
Mol Ther ; 15(3): 492-500, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28182896

RESUMEN

The advent of novel adeno-associated virus (AAV) serotype vectors with higher transduction activity has encouraged a re-evaluation of the merits of this delivery platform for a variety of diseases. We report here that administration of a recombinant AAV8-based serotype vector encoding human α-galactosidase A into Fabry mice facilitated more rapid and significantly higher levels of production of the enzyme than an AAV2 vector. This translated into improved clearance of globotriaosylceramide, the glycosphingolipid that accumulates in the lysosomes of affected Fabry cells, and to correction of the peripheral neuropathy shown associated with this disease. The higher levels of α-galactosidase A expression also allowed for a more rapid induction of immunotolerance to the enzyme. Recombinant AAV8 vectors that facilitated hepatic-restricted expression of high levels of α-galactosidase A conferred immunotolerance to the expressed enzyme as early as 30 days post-treatment. Animals expressing lower levels of the hydrolase, such as those treated with an AAV2-based vector or with lower doses of the AAV8-based vector, were also able to develop immunotolerance, but only after a more extended time period. Adoptive transfer of T cells isolated from the spleens of immunotolerized mice suppressed the formation of antibodies in naïve recipient animals, suggesting the possible role of regulatory T cells in effecting this state.

19.
Proc Natl Acad Sci U S A ; 103(27): 10373-10378, 2006 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-16801539

RESUMEN

Tay-Sachs disease is a prototypic neurodegenerative disease. Lysosomal storage of GM2 ganglioside in Tay-Sachs and the related disorder, Sandhoff disease, is caused by deficiency of beta-hexosaminidase A, a heterodimeric protein. Tay-Sachs-related diseases (GM2 gangliosidoses) are incurable, but gene therapy has the potential for widespread correction of the underlying lysosomal defect by means of the secretion-recapture cellular pathway for enzymatic complementation. Sandhoff mice, lacking the beta-subunit of hexosaminidase, manifest many signs of classical human Tay-Sachs disease and, with an acute course, die before 20 weeks of age. We treated Sandhoff mice by stereotaxic intracranial inoculation of recombinant adeno-associated viral vectors encoding the complementing human beta-hexosaminidase alpha and beta subunit genes and elements, including an HIV tat sequence, to enhance protein expression and distribution. Animals survived for >1 year with sustained, widespread, and abundant enzyme delivery in the nervous system. Onset of the disease was delayed with preservation of motor function; inflammation and GM2 ganglioside storage in the brain and spinal cord was reduced. Gene delivery of beta-hexosaminidase A by using adeno-associated viral vectors has realistic potential for treating the human Tay-Sachs-related diseases.


Asunto(s)
Modelos Animales de Enfermedad , Terapia Genética/métodos , Enfermedad de Tay-Sachs/genética , Enfermedad de Tay-Sachs/terapia , Animales , Peso Corporal/genética , Regulación Enzimológica de la Expresión Génica , Vectores Genéticos/genética , Glicoesfingolípidos/metabolismo , Inflamación/genética , Inflamación/metabolismo , Inflamación/patología , Inflamación/prevención & control , Ratones , Ratones Noqueados , Microscopía Electrónica , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Tasa de Supervivencia , Enfermedad de Tay-Sachs/metabolismo , Enfermedad de Tay-Sachs/patología , beta-N-Acetilhexosaminidasas/deficiencia , beta-N-Acetilhexosaminidasas/genética , beta-N-Acetilhexosaminidasas/metabolismo
20.
Mol Ther ; 12(3): 431-40, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16099409

RESUMEN

Acid sphingomyelinase deficiency is a lysosomal storage disorder in which the defective lysosomal hydrolase fails to degrade sphingomyelin. The resulting accumulation of substrate in the lysosomes of histiocytic cells leads to hepatosplenomegaly and severe pulmonary inflammation. Administration of a recombinant AAV1 vector encoding human acid sphingomyelinase to acid sphingomyelinase knockout (ASMKO) mice effectively reduced the accumulated substrate in all of the affected visceral organs. However, more complete and rapid clearance of sphingomyelin was observed when an AAV8-based serotype vector was used in lieu of AAV1. Importantly, AAV8-mediated hepatic expression of higher and sustained levels of the enzyme also corrected the abnormal cellularity, cell differentials, and levels of the chemokine MIP-1alpha in the bronchoalveolar lavage fluids of the ASMKO mice. Treatment also reversed the morphological aberrations associated with the alveolar macrophages of ASMKO mice and restored their phagocytic activity. No antibodies to the expressed enzyme were detected when the viral vectors were used in conjunction with a transcription cassette harboring a liver-restricted enhancer/promoter. Together, these data support the continued development of AAV8-mediated hepatic gene transfer as an approach to treat the visceral manifestations observed in individuals with acid sphingomyelinase deficiency.


Asunto(s)
Dependovirus/genética , Terapia Genética/métodos , Vectores Genéticos , Hígado/enzimología , Enfermedades de Niemann-Pick/terapia , Esfingomielina Fosfodiesterasa/genética , Esfingomielina Fosfodiesterasa/metabolismo , Animales , Líquido del Lavado Bronquioalveolar , Modelos Animales de Enfermedad , Elementos de Facilitación Genéticos , Técnicas de Transferencia de Gen , Terapia Genética/instrumentación , Humanos , Cinética , Hígado/metabolismo , Lisosomas/metabolismo , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fagocitosis , Regiones Promotoras Genéticas , Esfingomielinas/metabolismo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...