Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev E ; 109(5-2): 055202, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38907494

RESUMEN

Plasma wakefield acceleration represented a breakthrough in the field of particle accelerators by pushing beams to gigaelectronvolt energies within centimeter distances. The large electric fields excited by a driver pulse in the plasma can efficiently accelerate a trailing witness bunch paving the way toward the realization of laboratory-scale applications like free-electron lasers. However, while the accelerator size is tremendously reduced, upstream and downstream of it the beams are still handled with conventional magnetic optics with sizable footprints and rather long focal lengths. Here we show the operation of a compact device that integrates two active-plasma lenses with short focal lengths to assist the plasma accelerator stage. We demonstrate the focusing and energy gain of a witness bunch whose phase space is completely characterized in terms of energy and emittance. These results represent an important step toward the accelerator miniaturization and the development of next-generation table-top machines.

2.
Phys Rev Lett ; 132(21): 215001, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38856283

RESUMEN

We present a new approach that demonstrates the deflection and guiding of relativistic electron beams over curved paths by means of the magnetic field generated in a plasma-discharge capillary. We experimentally prove that the guiding is much less affected by the beam chromatic dispersion with respect to a conventional bending magnet and, with the support of numerical simulations, we show that it can even be made dispersionless by employing larger discharge currents. This proof-of-principle experiment extends the use of plasma-based devices, that revolutionized the field of particle accelerators enabling the generation of GeV beams in few centimeters. Compared to state-of-the-art technology based on conventional bending magnets and quadrupole lenses, these results provide a compact and affordable solution for the development of next-generation tabletop facilities.

4.
Rev Sci Instrum ; 95(3)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38456756

RESUMEN

Spectral measurements play a vital role in understanding laser-plasma interactions. The ability to accurately measure the spectrum of radiation sources is crucial for unraveling the underlying physics. In this article, we introduce a novel approach that significantly enhances the efficiency of binary sinusoidal transmission grating spectrometers . The grating was tailored especially for Extreme Ultraviolet (EUV) measurements. The new design, High Contrast Sinusoidal Transmission Grating (HCSTG), not only suppresses high diffraction orders and retains the advantageous properties of previous designs but also exhibits a fourfold improvement in first-order efficiency. In addition, the HCSTG offers exceptional purity in the first order due to effectively eliminating half-order contributions from the diffraction pattern. The HCSTG spectrometer was employed to measure the emission of laser-produced Sn plasma in the 1-50 nm spectral range, achieving a spectral resolution of λ/Δλ = 60. We provide a comprehensive analysis comparing the diffraction patterns of different STGs, highlighting the advantages offered by the HCSTG design. This novel, efficiency-enhanced HCSTG spectrometer opens up new possibilities for accurate and sensitive EUV spectral measurements.

5.
Phys Rev Lett ; 129(23): 234801, 2022 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-36563228

RESUMEN

The breakthrough provided by plasma-based accelerators enabled unprecedented accelerating fields by boosting electron beams to gigaelectronvolt energies within a few centimeters [1-4]. This, in turn, allows the realization of ultracompact light sources based on free-electron lasers (FELs) [5], as demonstrated by two pioneering experiments that reported the observation of self-amplified spontaneous emission (SASE) driven by plasma-accelerated beams [6,7]. However, the lack of stability and reproducibility due to the intrinsic nature of the SASE process (whose amplification starts from the shot noise of the electron beam) may hinder their effective implementation for user purposes. Here, we report a proof-of-principle experiment using plasma-accelerated beams to generate stable and reproducible FEL light seeded by an external laser. FEL radiation is emitted in the infrared range, showing the typical exponential growth of its energy over six consecutive undulators. Compared to SASE, the seeded FEL pulses have energies 2 orders of magnitude larger and stability that is 3 times higher.

6.
Nature ; 605(7911): 659-662, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35614244

RESUMEN

The possibility to accelerate electron beams to ultra-relativistic velocities over short distances by using plasma-based technology holds the potential for a revolution in the field of particle accelerators1-4. The compact nature of plasma-based accelerators would allow the realization of table-top machines capable of driving a free-electron laser (FEL)5, a formidable tool to investigate matter at the sub-atomic level by generating coherent light pulses with sub-ångström wavelengths and sub-femtosecond durations6,7. So far, however, the high-energy electron beams required to operate FELs had to be obtained through the use of conventional large-size radio-frequency (RF) accelerators, bound to a sizeable footprint as a result of their limited accelerating fields. Here we report the experimental evidence of FEL lasing by a compact (3-cm) particle-beam-driven plasma accelerator. The accelerated beams are completely characterized in the six-dimensional phase space and have high quality, comparable with state-of-the-art accelerators8. This allowed the observation of narrow-band amplified radiation in the infrared range with typical exponential growth of its intensity over six consecutive undulators. This proof-of-principle experiment represents a fundamental milestone in the use of plasma-based accelerators, contributing to the development of next-generation compact facilities for user-oriented applications9.

7.
Opt Lett ; 46(12): 2844-2847, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-34129555

RESUMEN

Photoemission is one of the fundamental processes that describes the generation of charged particles from materials irradiated by photons. The continuous progress in the development of ultrashort lasers allows investigation into the dynamics of the process at the femtosecond timescale. Here we report about experimental measurements using two ultrashort ultraviolet laser pulses to temporally probe the electrons release from a copper cathode in a radio-frequency photoinjector. By changing their relative delay, we studied how the release mechanism is affected by two-photon photoemission when tens of GW/cm2 intensities are employed. We evaluated the limits it poses on the achievable beam brightness and analyzed the resulting emission yield in terms of the electronic temperature by modeling the cathode as a two-temperature system.

8.
Sci Rep ; 11(1): 3071, 2021 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-33542470

RESUMEN

Time-Of-Flight (TOF) methods are very effective to detect particles accelerated in laser-plasma interactions, but they show significant limitations when used in experiments with high energy and intensity lasers, where both high-energy ions and remarkable levels of ElectroMagnetic Pulses (EMPs) in the radiofrequency-microwave range are generated. Here we describe a novel advanced diagnostic method for the characterization of protons accelerated by intense matter interactions with high-energy and high-intensity ultra-short laser pulses up to the femtosecond and even future attosecond range. The method employs a stacked diamond detector structure and the TOF technique, featuring high sensitivity, high resolution, high radiation hardness and high signal-to-noise ratio in environments heavily affected by remarkable EMP fields. A detailed study on the use, the optimization and the properties of a single module of the stack is here described for an experiment where a fast diamond detector is employed in an highly EMP-polluted environment. Accurate calibrated spectra of accelerated protons are presented from an experiment with the femtosecond Flame laser (beyond 100 TW power and ~ 1019 W/cm2 intensity) interacting with thin foil targets. The results can be readily applied to the case of complex stack configurations and to more general experimental conditions.

9.
Opt Lett ; 45(19): 5575-5578, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-33001957

RESUMEN

The interaction of an ultra-intense laser with a solid state target allows the production of multi-MeV proton and ion beams. This process is explained by the target normal sheath acceleration (TNSA) model, predicting the creation of an electric field on the target rear side, due to an unbalanced positive charge. This process is related to the emission of relativistic ultrafast electrons, occurring at an earlier time. In this work, we highlight the correlations between the ultrafast electron component and the protons by their simultaneous detection by means of an electro-optical sampling and a time-of-flight diagnostics, respectively, supported by numerical simulations showing an excellent agreement.

10.
Opt Lett ; 45(16): 4420-4423, 2020 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-32796973

RESUMEN

High-intensity ultrashort laser pulses interacting with thin solid targets are able to produce energetic ion beams by means of extremely large accelerating fields set by the energetic ejected electrons. The characterization of such electrons is thus important in view of a complete understanding of the acceleration process. Here, we present a complete temporal-resolved characterization of the fastest escaping hot electron component for different target materials and thicknesses, using temporal diagnostics based on electro-optical sampling with 100 fs temporal resolution. Experimental evidence of scaling laws for ultrafast electron beam parameters have been retrieved with respect to the impinging laser energy (0.4-4 J range) and to the target material, and an empirical law determining the beam parameters as a function of the target thickness is presented.

11.
Phys Rev Lett ; 122(11): 114801, 2019 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-30951354

RESUMEN

The development of compact accelerator facilities providing high-brightness beams is one of the most challenging tasks in the field of next-generation compact and cost affordable particle accelerators, to be used in many fields for industrial, medical, and research applications. The ability to shape the beam longitudinal phase space, in particular, plays a key role in achieving high-peak brightness. Here we present a new approach that allows us to tune the longitudinal phase space of a high-brightness beam by means of plasma wakefields. The electron beam passing through the plasma drives large wakefields that are used to manipulate the time-energy correlation of particles along the beam itself. We experimentally demonstrate that such a solution is highly tunable by simply adjusting the density of the plasma and can be used to imprint or remove any correlation onto the beam. This is a fundamental requirement when dealing with largely time-energy correlated beams coming from future plasma accelerators.

12.
Phys Rev Lett ; 121(17): 174801, 2018 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-30411933

RESUMEN

Plasma-based technology promises a tremendous reduction in size of accelerators used for research, medical, and industrial applications, making it possible to develop tabletop machines accessible for a broader scientific community. By overcoming current limits of conventional accelerators and pushing particles to larger and larger energies, the availability of strong and tunable focusing optics is mandatory also because plasma-accelerated beams usually have large angular divergences. In this regard, active-plasma lenses represent a compact and affordable tool to generate radially symmetric magnetic fields several orders of magnitude larger than conventional quadrupoles and solenoids. However, it has been recently proved that the focusing can be highly nonlinear and induce a dramatic emittance growth. Here, we present experimental results showing how these nonlinearities can be minimized and lensing improved. These achievements represent a major breakthrough toward the miniaturization of next-generation focusing devices.

13.
Rev Sci Instrum ; 89(8): 083502, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30184621

RESUMEN

Plasma-based acceleration experiments require capillaries with a radius of a few hundred microns to confine plasma up to a centimeter scale capillary length. A long and controlled plasma channel allows to sustain high fields which may be used for manipulation of the electron beams or to accelerate electrons. The production of these capillaries is relatively complicated and expensive since they are usually made with hard materials whose manufacturing requires highly specialized industries. Fine variations of the capillary shape may significantly increase the cost and time needed to produce them. In this article, we demonstrate the possibility of using 3D printed polymeric capillaries to drive a hydrogen-filled plasma discharge up to 1 Hz of repetition rate in an RF based electron linac. The plasma density distribution has been measured after several shot intervals, showing the effect of the surface ablation on the plasma density distribution. This effect is almost invisible in the earlier stages of the discharge. After more than 55000 shots (corresponding to more than 16 h of working time), the effects of the ablation on the plasma density distribution are not evident and the capillary can still be used. The use of these capillaries will significantly reduce the cost and time for prototyping, allowing us to easily manipulate their geometry, laying another building block for future cheap and compact particle accelerators.

14.
Sci Rep ; 8(1): 3243, 2018 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-29459758

RESUMEN

The interaction of high-power ultra-short lasers with materials offers fascinating wealth of transient phenomena which are in the core of novel scientific research. Deciphering its evolution is a complicated task that strongly depends on the details of the early phase of the interaction, which acts as complex initial conditions. The entire process, moreover, is difficult to probe since it develops close to target on the sub-picosecond timescale and ends after some picoseconds. Here we present experimental results related to the fields and charges generated by the interaction of an ultra-short high-intensity laser with metallic targets. The temporal evolution of the interaction is probed with a novel femtosecond resolution diagnostics that enables the differentiation of the contribution by the high-energy forerunner electrons and the radiated electromagnetic pulses generated by the currents of the remaining charges on the target surface. Our results provide a snapshot of huge pulses, up to 0.6 teravolt per meter, emitted with multi-megaelectronvolt electron bunches with sub-picosecond duration and are able to explore the processes involved in laser-matter interactions at the femtosecond timescale.

15.
Sci Rep ; 6: 35000, 2016 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-27713541

RESUMEN

Highly energetic electrons are generated at the early phases of the interaction of short-pulse high-intensity lasers with solid targets. These escaping particles are identified as the essential core of picosecond-scale phenomena such as laser-based acceleration, surface manipulation, generation of intense magnetic fields and electromagnetic pulses. Increasing the number of the escaping electrons facilitate the late time processes in all cases. Up to now only indirect evidences of these important forerunners have been recorded, thus no detailed study of the governing mechanisms was possible. Here we report, for the first time, direct time-dependent measurements of energetic electrons ejected from solid targets by the interaction with a short-pulse high-intensity laser. We measured electron bunches up to 7 nanocoulombs charge, picosecond duration and 12 megaelectronvolts energy. Our 'snapshots' capture their evolution with an unprecedented temporal resolution, demonstrat- ing a significant boost in charge and energy of escaping electrons when increasing the geometrical target curvature. These results pave the way toward significant improvement in laser acceleration of ions using shaped targets allowing the future development of small scale laser-ion accelerators.

16.
Opt Express ; 24(26): 29512-29520, 2016 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-28059338

RESUMEN

The interaction of a high-intensity short-pulse laser with thin solid targets produces electron jets that escape the target and positively charge it, leading to the formation of the electrostatic potential that in turn governs the ion acceleration. The typical timescale of such phenomena is on the sub-picosecond level. Here we show, for the first time, temporally-resolved measurements of the first released electrons that escaped from the target, so-called fast electrons. Their total charge, energy and temporal profile are provided by means of a diagnostics based on Electro-Optical Sampling with temporal resolution below 100 fs.

17.
Phys Rev Lett ; 110(21): 215004, 2013 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-23745890

RESUMEN

We experimentally demonstrate a notably enhanced acceleration of protons to high energy by relatively modest ultrashort laser pulses and structured dynamical plasma targets. Realized by special deposition of snow targets on sapphire substrates and using carefully planned prepulses, high proton yields emitted in a narrow solid angle with energy above 21 MeV were detected from a 5 TW laser. Our simulations predict that using the proposed scheme protons can be accelerated to energies above 150 MeV by 100 TW laser systems.


Asunto(s)
Rayos Láser , Aceleradores de Partículas , Gases em Plasma/química , Protones , Física Nuclear
18.
Opt Express ; 21(4): 5077-85, 2013 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-23482042

RESUMEN

We demonstrate that amplified spontaneous emission (ASE) and pre-pulses for high power lasers can be suppressed by propagating the pulse through a boron nitride plasma microlens. The microlens is created by ablating a boron-nitride (BN) disk with a central hole using an Nd:YAG laser . The plasma lens produced in the ablation process exhibits different focal lengths for the high intensity main pulse and low intensity pre-pulse that increases the main pulse/pre-pulse contrast ratio by one order of magnitude while maintaining high transmittance of the pulse energy.


Asunto(s)
Amplificadores Electrónicos , Compuestos de Boro/química , Rayos Láser , Lentes , Gases em Plasma/química , Diseño de Equipo , Análisis de Falla de Equipo
19.
Phys Rev Lett ; 106(13): 134801, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21517389

RESUMEN

We report on the first generation of 5.5-7.5 MeV protons by a moderate-intensity short-pulse laser (∼5×10(17) W/cm(2), 40 fsec) interacting with frozen H(2)O nanometer-size structure droplets (snow nanowires) deposited on a sapphire substrate. In this setup, the laser intensity is locally enhanced by the snow nanowire, leading to high spatial gradients. Accordingly, the nanoplasma is subject to enhanced ponderomotive potential, and confined charge separation is obtained. Electrostatic fields of extremely high intensities are produced over the short scale length, and protons are accelerated to MeV-level energies.

20.
Philos Trans A Math Phys Eng Sci ; 364(1840): 611-22, 2006 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-16483952

RESUMEN

The staged electron laser acceleration (STELLA) experiment demonstrated staging between two laser-driven devices, high trapping efficiency of microbunches within the accelerating field and narrow energy spread during laser acceleration. These are important for practical laser-driven accelerators. STELLA used inverse free electron lasers, which were chosen primarily for convenience. Nevertheless, the STELLA approach can be applied to other laser acceleration methods, in particular, laser-driven plasma accelerators. STELLA is now conducting experiments on laser wakefield acceleration (LWFA). Two novel LWFA approaches are being investigated. In the first one, called pseudo-resonant LWFA, a laser pulse enters a low-density plasma where nonlinear laser/plasma interactions cause the laser pulse shape to steepen, thereby creating strong wakefields. A witness e-beam pulse probes the wakefields. The second one, called seeded self-modulated LWFA, involves sending a seed e-beam pulse into the plasma to initiate wakefield formation. These wakefields are amplified by a laser pulse following shortly after the seed pulse. A second e-beam pulse (witness) follows the seed pulse to probe the wakefields. These LWFA experiments will also be the first ones driven by a CO(2) laser beam.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA