Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38443463

RESUMEN

BACKGROUND: Household air pollution (HAP) is a major risk factor of non-communicable diseases, causing millions of premature deaths each year in developing nations. Populations living at high altitudes are particularly vulnerable to HAP and associated health outcomes. OBJECTIVES: This study aims to explore the relationships between activity patterns, HAP, and an HAP biomarker among 100 Himalayan nomadic households during both cooking and heating-only periods. METHODS: Household CO was monitored in 100 rural homes in Qinghai, China, at 3500 m on the Himalayan Plateau among Himalayan nomads. Carboxyhemoglobin (COHb) was used as a biomarker to assess exposure among 100 male and 100 female heads of household. Linear mixed-effects models were used to explore the relationship between COHb and activity patterns. RESULTS: Cooking periods were associated with 7 times higher household CO concentrations compared with heating periods (94 ± 56 ppm and 13 ± 11 ppm, respectively). Over the three-day biomarker-monitoring period in each house, 99% of subjects had at least one COHb measurement exceeding the WHO safety level of 2%. Cooking was associated with a 32% increase in COHb (p < 0.001). IMPACT STATEMENT: This study on household air pollution (HAP) in high-altitude regions provides important insights into the exposure patterns of nomadic households in Qinghai, China. The study found that cooking is the primary factor influencing acute carbon monoxide (CO) exposure among women, while heating alone is sufficient to elevate CO exposure above WHO guidelines. The results suggest that cooking-only interventions have the potential to reduce HAP exposure among women, but solutions for both cooking and heating may be required to reduce COHb to below WHO guidelines. This study's findings may inform future interventions for fuel and stove selection to reduce HAP and exposure among other populations.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38412262

RESUMEN

RATIONALE: The share of Black or Latinx residents in a census tract remains associated with asthma-related Emergency Department visit rates after controlling for socioeconomic factors. The extent to which evident disparities relate to within-city heterogeneity of long-term air pollution exposure remains unclear. OBJECTIVES: To investigate the role of intraurban spatial variability of air pollution in asthma acute care use disparity. METHODS: An administrative database was used to define census tract population-based incidence rates of asthma-related Emergency Department visits. We estimate the association between census tract incidence rates and (a) average fine and coarse particulate matter (PM2.5, PM10), nitrogen dioxide (NO2), and sulfur dioxide (SO2); and (b) racial/ethnic composition using generalized linear models controlling for socioeconomic and housing covariates. We additionally examine for attenuation of incidence risk ratios (IRR) associated with race/ethnicity when controlling for air pollution exposure. MEASUREMENTS AND MAIN RESULTS: PM2.5, PM10, and SO2 are each associated with census tract-level incidence rates of asthma-related ED visits and multipollutant models show evidence of independent risk associated with PM10 and SO2. Association between census tract incidence rates and Black resident share (IRR [CI] = 1.51 [1.48-1.54]) is attenuated by 24% when accounting for air pollution (1.39 [1.35-1.42]), and the association with Latinx resident share (1.11 [1.09-1.13]) is attenuated by 32% (1.08 [1.06-1.10]). CONCLUSIONS: Neighborhood-level rates of asthma acute care use are associated with local air pollution. Controlling for air pollution attenuates associations with census tract racial/ethnic composition, suggesting that intracity variability in air pollution could contribute to neighborhood-to-neighborhood asthma morbidity disparities.

3.
Artículo en Inglés | MEDLINE | ID: mdl-38135708

RESUMEN

BACKGROUND: National-scale linear regression-based modeling may mischaracterize localized patterns, including hyperlocal peaks and neighborhood- to regional-scale gradients. For studies focused on within-city differences, this mischaracterization poses a risk of exposure misclassification, affecting epidemiological and environmental justice conclusions. OBJECTIVE: Characterize the difference between intraurban pollution patterns predicted by national-scale land use regression modeling and observation-based estimates within a localized domain and examine the relationship between that difference and urban infrastructure and demographics. METHODS: We compare highly resolved (0.01 km2) observations of NO2 mixing ratio and ultrafine particle (UFP) count obtained via mobile monitoring with national model predictions in thirteen neighborhoods in the San Francisco Bay Area. Grid cell-level divergence between modeled and observed concentrations is termed "localized difference." We use a flexible machine learning modeling technique, Bayesian Additive Regression Trees, to investigate potentially nonlinear relationships between discrepancy between localized difference and known local emission sources as well as census block group racial/ethnic composition. RESULTS: We find that observed local pollution extremes are not represented by land use regression predictions and that observed UFP count significantly exceeds regression predictions. Machine learning models show significant nonlinear relationships among localized differences between predictions and observations and the density of several types of pollution-related infrastructure (roadways, commercial and industrial operations). In addition, localized difference was greater in areas with higher population density and a lower share of white non-Hispanic residents, indicating that exposure misclassification by national models differs among subpopulations. IMPACT: Comparing national-scale pollution predictions with hyperlocal observations in the San Francisco Bay Area, we find greater discrepancies near major roadways and food service locations and systematic underestimation of concentrations in neighborhoods with a lower share of non-Hispanic white residents. These findings carry implications for using national-scale models in intraurban epidemiological and environmental justice applications and establish the potential utility of supplementing large-scale estimates with publicly available urban infrastructure and pollution source information.

4.
Sci Adv ; 8(48): eabn8762, 2022 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-36459553

RESUMEN

Understanding impacts of renewable energy on air quality and associated human exposures is essential for informing future policy. We estimate the impacts of U.S. wind power on air quality and pollution exposure disparities using hourly data from 2011 to 2017 and detailed atmospheric chemistry modeling. Wind power associated with renewable portfolio standards in 2014 resulted in $2.0 billion in health benefits from improved air quality. A total of 29% and 32% of these health benefits accrued to racial/ethnic minority and low-income populations respectively, below a 2021 target by the Biden administration that 40% of the overall benefits of future federal investments flow to disadvantaged communities. Wind power worsened exposure disparities among racial and income groups in some states but improved them in others. Health benefits could be up to $8.4 billion if displacement of fossil fuel generators prioritized those with higher health damages. However, strategies that maximize total health benefits would not mitigate pollution disparities, suggesting that more targeted measures are needed.

5.
J Am Stat Assoc ; 117(539): 1082-1093, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36246415

RESUMEN

Understanding how individual pollution sources contribute to ambient sulfate pollution is critical for assessing past and future air quality regulations. Since attribution to specific sources is typically not encoded in spatial air pollution data, we develop a mechanistic model which we use to estimate, with uncertainty, the contribution of ambient sulfate concentrations attributable specifically to sulfur dioxide (SO2) emissions from individual coal-fired power plants in the central United States. We propose a multivariate Ornstein-Uhlenbeck (OU) process approximation to the dynamics of the underlying space-time chemical transport process, and its distributional properties are leveraged to specify novel probability models for spatial data that are viewed as either a snapshot or time-averaged observation of the OU process. Using US EPA SO2 emissions data from 193 power plants and state-of-the-art estimates of ground-level annual mean sulfate concentrations, we estimate that in 2011 - a time of active power plant regulatory action - existing flue-gas desulfurization (FGD) technologies at 66 power plants reduced population-weighted exposure to ambient sulfate by 1.97 µg/m3 (95% CI: 1.80 - 2.15). Furthermore, we anticipate future regulatory benefits by estimating that installing FGD technologies at the five largest SO2-emitting facilities would reduce human exposure to ambient sulfate by an additional 0.45 µg/m3 (95% CI: 0.33 - 0.54).

6.
Am J Epidemiol ; 190(12): 2658-2661, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34079988

RESUMEN

The accompanying article by Keil et al. (Am J Epidemiol. 2021;190(12):2647-2657) deploys Bayesian g-computation to investigate the causal effect of 6 airborne metal exposures linked to power-plant emissions on birth weight. In so doing, it articulates the potential value of framing the analysis of environmental mixtures as an explicit contrast between exposure distributions that might arise in response to a well-defined intervention-here, the decommissioning of coal plants. Framing the mixture analysis as that of an approximate "target trial" is an important approach that deserves incorporation into the already rich literature on the analysis of environmental mixtures. However, its deployment in the power plant example highlights challenges that can arise when the target trial is at odds with the exposure distribution observed in the data, a discordance that seems particularly difficult in studies of environmental mixtures. Bayesian methodology such as model averaging and informative priors can help, but they are ultimately limited for overcoming this salient challenge.


Asunto(s)
Exposición a Riesgos Ambientales , Teorema de Bayes , Causalidad , Exposición a Riesgos Ambientales/efectos adversos , Humanos
7.
Stat Sci ; 36(1): 109-123, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33867656

RESUMEN

Statistical methods to evaluate the effectiveness of interventions are increasingly challenged by the inherent interconnectedness of units. Specifically, a recent flurry of methods research has addressed the problem of interference between observations, which arises when one observational unit's outcome depends not only on its treatment but also the treatment assigned to other units. We introduce the setting of bipartite causal inference with interference, which arises when 1) treatments are defined on observational units that are distinct from those at which outcomes are measured and 2) there is interference between units in the sense that outcomes for some units depend on the treatments assigned to many other units. The focus of this work is to formulate definitions and several possible causal estimands for this setting, highlighting similarities and differences with more commonly considered settings of causal inference with interference. Towards an empirical illustration, an inverse probability of treatment weighted estimator is adapted from existing literature to estimate a subset of simplified, but interesting, estimands. The estimators are deployed to evaluate how interventions to reduce air pollution from 473 power plants in the U.S. causally affect cardiovascular hospitalization among Medicare beneficiaries residing at 18,807 zip code locations.

8.
Environ Sci Technol ; 55(2): 882-892, 2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33400508

RESUMEN

On-road emissions sources degrade air quality, and these sources have been highly regulated. Epidemiological and environmental justice studies often use road proximity as a proxy for traffic-related air pollution (TRAP) exposure, and other studies employ air quality models or satellite observations. To assess these metrics' abilities to reproduce observed near-road concentration gradients and changes over time, we apply a hierarchical linear regression to ground-based observations, long-term air quality model simulations using Community Multiscale Air Quality (CMAQ), and satellite products. Across 1980-2019, observed TRAP concentrations decreased, and road proximity was positively correlated with TRAP. For all pollutants, concentrations decreased fastest at locations with higher road proximity, resulting in "flatter" concentration fields in recent years. This flattening unfolded at a relatively constant rate for NOx, whereas the flattening of CO concentration fields has slowed. CMAQ largely captures observed spatial-temporal NO2 trends across 2002-2010 but overstates the relationships between CO and elemental carbon fine particulate matter (EC) road proximity. Satellite NOx measures overstate concentration reductions near roads. We show how this perspective provides evidence that California's on-road vehicle regulations led to substantial decreases in NO2, NOx, and EC in California, with other states that adopted California's light-duty automobile standards showing mixed benefits over states that did not adopt these standards.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Ambientales , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Monitoreo del Ambiente , Material Particulado/análisis , Estados Unidos , Emisiones de Vehículos/análisis
9.
J Expo Sci Environ Epidemiol ; 31(4): 654-663, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-32203059

RESUMEN

Expanded use of reduced complexity approaches in epidemiology and environmental justice investigations motivates detailed evaluation of these modeling approaches. Chemical transport models (CTMs) remain the most complete representation of atmospheric processes but are limited in applications that require large numbers of runs, such as those that evaluate individual impacts from large numbers of sources. This limitation motivates comparisons between modern CTM-derived techniques and intentionally simpler alternatives. We model population-weighted PM2.5 source impacts from each of greater than 1100 coal power plants operating in the United States in 2006 and 2011 using three approaches: (1) adjoint PM2.5 sensitivities calculated by the GEOS-Chem CTM; (2) a wind field-based Lagrangian model called HyADS; and (3) a simple calculation based on emissions and inverse source-receptor distance. Annual individual power plants' nationwide population-weighted PM2.5 source impacts calculated by HyADS and the inverse distance approach have normalized mean errors between 20 and 28% and root mean square error ranges between 0.0003 and 0.0005 µg m-3 compared with adjoint sensitivities. Reduced complexity approaches are most similar to the GEOS-Chem adjoint sensitivities nearby and downwind of sources, with degrading performance farther from and upwind of sources particularly when wind fields are not accounted for.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Monitoreo del Ambiente , Humanos , Material Particulado/análisis , Estados Unidos , Emisiones de Vehículos/análisis
10.
Implement Sci Commun ; 1: 29, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32885188

RESUMEN

BACKGROUND: Despite extensive efforts to develop and refine intervention packages, complex interventions often fail to produce the desired health impacts in full-scale evaluations. A recent example of this phenomenon is BetterBirth, a complex intervention designed to implement the World Health Organization's Safe Childbirth Checklist and improve maternal and neonatal health. Using data from the BetterBirth Program and its associated trial as a case study, we identified lessons to assist in the development and evaluation of future complex interventions. METHODS: BetterBirth was refined across three sequential development phases prior to being tested in a matched-pair, cluster randomized trial in Uttar Pradesh, India. We reviewed published and internal materials from all three development phases to identify barriers hindering the identification of an optimal intervention package and identified corresponding lessons learned. For each lesson, we describe its importance and provide an example motivated by the BetterBirth Program's development to illustrate how it could be applied to future studies. RESULTS: We identified three lessons: (1) develop a robust theory of change (TOC); (2) define optimization outcomes, which are used to assess the effectiveness of the intervention across development phases, and corresponding criteria for success, which determine whether the intervention has been sufficiently optimized to warrant full-scale evaluation; and (3) create and capture variation in the implementation intensity of components. When applying these lessons to the BetterBirth intervention, we demonstrate how a TOC could have promoted more complete data collection. We propose an optimization outcome and related criteria for success and illustrate how they could have resulted in additional development phases prior to the full-scale trial. Finally, we show how variation in components' implementation intensities could have been used to identify effective intervention components. CONCLUSION: These lessons learned can be applied during both early and advanced stages of complex intervention development and evaluation. By using examples from a real-world study to demonstrate the relevance of these lessons and illustrating how they can be applied in practice, we hope to encourage future researchers to collect and analyze data in a way that promotes more effective complex intervention development and evaluation. TRIAL REGISTRATION: ClinicalTrials.gov, NCT02148952; registered on May 29, 2014.

11.
Genet Epidemiol ; 44(7): 785-794, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32681690

RESUMEN

Noncoding DNA contains gene regulatory elements that alter gene expression, and the function of these elements can be modified by genetic variation. Massively parallel reporter assays (MPRA) enable high-throughput identification and characterization of functional genetic variants, but the statistical methods to identify allelic effects in MPRA data have not been fully developed. In this study, we demonstrate how the baseline allelic imbalance in MPRA libraries can produce biased results, and we propose a novel, nonparametric, adaptive testing method that is robust to this bias. We compare the performance of this method with other commonly used methods, and we demonstrate that our novel adaptive method controls Type I error in a wide range of scenarios while maintaining excellent power. We have implemented these tests along with routines for simulating MPRA data in the Analysis Toolset for MPRA (@MPRA), an R package for the design and analyses of MPRA experiments. It is publicly available at http://github.com/redaq/atMPRA.


Asunto(s)
ADN/genética , Expresión Génica/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , ARN no Traducido/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Alelos , Variación Genética/genética , Humanos , Proyectos de Investigación , Programas Informáticos
12.
Stat Med ; 39(17): 2265-2290, 2020 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-32449222

RESUMEN

The two-stage process of propensity score analysis (PSA) includes a design stage where propensity scores (PSs) are estimated and implemented to approximate a randomized experiment and an analysis stage where treatment effects are estimated conditional on the design. This article considers how uncertainty associated with the design stage impacts estimation of causal effects in the analysis stage. Such design uncertainty can derive from the fact that the PS itself is an estimated quantity, but also from other features of the design stage tied to choice of PS implementation. This article offers a procedure for obtaining the posterior distribution of causal effects after marginalizing over a distribution of design-stage outputs, lending a degree of formality to Bayesian methods for PSA that have gained attention in recent literature. Formulation of a probability distribution for the design-stage output depends on how the PS is implemented in the design stage, and propagation of uncertainty into causal estimates depends on how the treatment effect is estimated in the analysis stage. We explore these differences within a sample of commonly used PS implementations (quantile stratification, nearest-neighbor matching, caliper matching, inverse probability of treatment weighting, and doubly robust estimation) and investigate in a simulation study the impact of statistician choice in PS model and implementation on the degree of between- and within-design variability in the estimated treatment effect. The methods are then deployed in an investigation of the association between levels of fine particulate air pollution and elevated exposure to emissions from coal-fired power plants.


Asunto(s)
Contaminación del Aire , Teorema de Bayes , Causalidad , Puntaje de Propensión , Incertidumbre
13.
Glob Health Sci Pract ; 8(1): 38-54, 2020 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-32127359

RESUMEN

BACKGROUND: Coaching can improve the quality of care in primary-level birth facilities and promote birth attendant adherence to essential birth practices (EBPs) that reduce maternal and perinatal mortality. The intensity of coaching needed to promote and sustain behavior change is unknown. We investigated the relationship between coaching intensity, EBP adherence, and maternal and perinatal health outcomes using data from the BetterBirth Trial, which assessed the impact of a complex, coaching-based implementation of the World Health Organization's Safe Childbirth Checklist in Uttar Pradesh, India. METHODS: For each birth, we defined multiple coaching intensity metrics, including coaching frequency (coaching visits per month), cumulative coaching (total coaching visits accrued during the intervention), and scheduling adherence (coaching delivered as scheduled). We considered coaching delivered at both facility and birth attendant levels. We assessed the association between coaching intensity and birth attendant adherence to 18 EBPs and with maternal and perinatal health outcomes using regression models. RESULTS: Coaching frequency was associated with modestly increased EBP adherence. Delivering 6 coaching visits per month to facilities was associated with adherence to 1.3 additional EBPs (95% confidence interval [CI]=0.6, 1.9). High-frequency coaching delivered with high coverage among birth attendants was associated with greater improvements: providing 70% of birth attendants at a facility with at least 1 visit per month was associated with adherence to 2.0 additional EBPs (95% CI=1.0, 2.9). Neither cumulative coaching nor scheduling adherence was associated with EBP adherence. Coaching was generally not associated with health outcomes, possibly due to the small magnitude of association between coaching and EBP adherence. CONCLUSIONS: Frequent coaching may promote behavior change, especially if delivered with high coverage among birth attendants. However, the effects of coaching were modest and did not persist over time, suggesting that future coaching-based interventions should explore providing frequent coaching for longer periods.


Asunto(s)
Lista de Verificación , Adhesión a Directriz , Tutoría/métodos , Partería , Enfermeras y Enfermeros , Femenino , Instituciones de Salud , Humanos , India , Recién Nacido , Mortalidad Materna , Complicaciones del Trabajo de Parto/epidemiología , Parto , Mortalidad Perinatal , Embarazo , Trastornos Puerperales/epidemiología , Calidad de la Atención de Salud
14.
Atmos Environ (1994) ; 203: 271-280, 2019 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-31749659

RESUMEN

In anticipation of the expanding appreciation for air quality models in health outcomes studies, we develop and evaluate a reduced-complexity model for pollution transport that intentionally sacrifices some of the sophistication of full-scale chemical transport models in order to support applicability to a wider range of health studies. Specifically, we introduce the HYSPLIT average dispersion model, HyADS, which combines the HYSPLIT trajectory dispersion model with modern advances in parallel computing to estimate ZIP code level exposure to emissions from individual coal-powered electricity generating units in the United States. Importantly, the method is not designed to reproduce ambient concentrations of any particular air pollutant; rather, the primary goal is to characterize each ZIP code's exposure to these coal power plants specifically. We show adequate performance towards this goal against observed annual average air pollutant concentrations (nationwide Pearson correlations of 0.88 and 0.73 with SO 4 2 - and PM2.5, respectively) and coal-combustion impacts simulated with a full-scale chemical transport model and adjusted to observations using a hybrid direct sensitivities approach (correlation of 0.90). We proceed to provide multiple examples of HyADS's single-source applicability, including to show that 22% of the population-weighted coal exposure comes from 30 coal-powered electricity generating units.

15.
Ann Appl Stat ; 13(3): 1927-1956, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31656548

RESUMEN

Emission control technologies installed on power plants are a key feature of many air pollution regulations in the US. While such regulations are predicated on the presumed relationships between emissions, ambient air pollution, and human health, many of these relationships have never been empirically verified. The goal of this paper is to develop new statistical methods to quantify these relationships. We frame this problem as one of mediation analysis to evaluate the extent to which the effect of a particular control technology on ambient pollution is mediated through causal effects on power plant emissions. Since power plants emit various compounds that contribute to ambient pollution, we develop new methods for multiple intermediate variables that are measured contemporaneously, may interact with one another, and may exhibit joint mediating effects. Specifically, we propose new methods leveraging two related frameworks for causal inference in the presence of mediating variables: principal stratification and causal mediation analysis. We define principal effects based on multiple mediators, and also introduce a new decomposition of the total effect of an intervention on ambient pollution into the natural direct effect and natural indirect effects for all combinations of mediators. Both approaches are anchored to the same observed-data models, which we specify with Bayesian nonparametric techniques. We provide assumptions for estimating principal causal effects, then augment these with an additional assumption required for causal mediation analysis. The two analyses, interpreted in tandem, provide the first empirical investigation of the presumed causal pathways that motivate important air quality regulatory policies.

16.
Stat Med ; 38(15): 2797-2815, 2019 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-30931547

RESUMEN

The literature on causal effect estimation tends to focus on the population mean estimand, which is less informative as medical treatments are becoming more personalized and there is increasing awareness that subpopulations of individuals may experience a group-specific effect that differs from the population average. In fact, it is possible that there is underlying systematic effect heterogeneity that is obscured by focusing on the population mean estimand. In this context, understanding which covariates contribute to this treatment effect heterogeneity (TEH) and how these covariates determine the differential treatment effect (TE) is an important consideration. Towards such an understanding, this paper briefly reviews three approaches used in making causal inferences and conducts a simulation study to compare these approaches according to their performance in an exploratory evaluation of TEH when the heterogeneous subgroups are not known a priori. Performance metrics include the detection of any heterogeneity, the identification and characterization of heterogeneous subgroups, and unconfounded estimation of the TE within subgroups. The methods are then deployed in a comparative effectiveness evaluation of drug-eluting versus bare-metal stents among 54 099 Medicare beneficiaries in the continental United States admitted to a hospital with acute myocardial infarction in 2008.


Asunto(s)
Causalidad , Factores de Confusión Epidemiológicos , Teorema de Bayes , Simulación por Computador , Humanos , Puntaje de Propensión , Análisis de Regresión , Resultado del Tratamiento
17.
Biometrics ; 75(3): 778-787, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30859545

RESUMEN

Interference arises when an individual's potential outcome depends on the individual treatment level, but also on the treatment level of others. A common assumption in the causal inference literature in the presence of interference is partial interference, implying that the population can be partitioned in clusters of individuals whose potential outcomes only depend on the treatment of units within the same cluster. Previous literature has defined average potential outcomes under counterfactual scenarios where treatments are randomly allocated to units within a cluster. However, within clusters there may be units that are more or less likely to receive treatment based on covariates or neighbors' treatment. We define new estimands that describe average potential outcomes for realistic counterfactual treatment allocation programs, extending existing estimands to take into consideration the units' covariates and dependence between units' treatment assignment. We further propose entirely new estimands for population-level interventions over the collection of clusters, which correspond in the motivating setting to regulations at the federal (vs. cluster or regional) level. We discuss these estimands, propose unbiased estimators and derive asymptotic results as the number of clusters grows. For a small number of observed clusters, a bootstrap approach for confidence intervals is proposed. Finally, we estimate effects in a comparative effectiveness study of power plant emission reduction technologies on ambient ozone pollution.


Asunto(s)
Causalidad , Análisis por Conglomerados , Modelos Estadísticos , Contaminación del Aire/análisis , Contaminación del Aire/prevención & control , Simulación por Computador , Humanos , Ozono/efectos adversos , Centrales Eléctricas , Resultado del Tratamiento
19.
Biostatistics ; 20(2): 256-272, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29365040

RESUMEN

Propensity score matching is a common tool for adjusting for observed confounding in observational studies, but is known to have limitations in the presence of unmeasured confounding. In many settings, researchers are confronted with spatially-indexed data where the relative locations of the observational units may serve as a useful proxy for unmeasured confounding that varies according to a spatial pattern. We develop a new method, termed distance adjusted propensity score matching (DAPSm) that incorporates information on units' spatial proximity into a propensity score matching procedure. We show that DAPSm can adjust for both observed and some forms of unobserved confounding and evaluate its performance relative to several other reasonable alternatives for incorporating spatial information into propensity score adjustment. The method is motivated by and applied to a comparative effectiveness investigation of power plant emission reduction technologies designed to reduce population exposure to ambient ozone pollution. Ultimately, DAPSm provides a framework for augmenting a "standard" propensity score analysis with information on spatial proximity and provides a transparent and principled way to assess the relative trade-offs of prioritizing observed confounding adjustment versus spatial proximity adjustment.


Asunto(s)
Factores de Confusión Epidemiológicos , Modelos Estadísticos , Puntaje de Propensión , Análisis Espacial , Contaminación del Aire/prevención & control , Exposición a Riesgos Ambientales/prevención & control , Humanos
20.
Environ Res Lett ; 14(11)2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33408754

RESUMEN

Recent studies have sought epidemiological evidence of the effectiveness of energy transitions. Such evidence often relies on so-called "natural experiments," wherein environmental and/or health outcomes are assessed before, during, and after the transition of interest. Often, these studies attribute air pollution exposure changes-either modeled or measured-directly to the transition. We formalize a framework for separating the fractions of a given exposure change attributable to meteorological variability and emissions changes. Using this framework, we quantify relative impacts of wind variability and emissions changes from coal-fired power plants on exposure to SO2 emissions across the United States under three unique combinations of spatial-temporal and source scales. We find that the large emissions reductions achieved by United States coal-fired power plants after 2005 dominated population exposure changes. In each of the three case studies, however, we identified periods and regions in which meteorology dampened or accentuated differences in total exposure relative to exposure change expected from emissions reductions alone. The results evidence a need for separating meteorology-induced variability in exposure when attributing health impacts to specific energy transitions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...