Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-926006

RESUMEN

At the end of 2019, the SARS-CoV-2 induces an ongoing outbreak of pneumonia in China1, even more spread than SARS-CoV infection2. The entry of SARS-CoV into host cells mainly depends on the cell receptor (ACE2) recognition and spike protein cleavage-induced cell membrane fusion3,4. The spike protein of SARS-CoV-2 also binds to ACE2 with a similar affinity, whereas its spike protein cleavage remains unclear5,6. Here we show that an insertion sequence in the spike protein of SARS-CoV-2 enhances the cleavage efficiency, and besides pulmonary alveoli, intestinal and esophagus epithelium were also the target tissues of SARS-CoV-2. Compared with SARS-CoV, we found a SPRR insertion in the S1/S2 protease cleavage sites of SARS-CoV-2 spike protein increasing the cleavage efficiency by the protein sequence aligment and furin score calculation. Additionally, the insertion sequence facilitates the formation of an extended loop which was more suitable for protease recognition by the homology modeling and molicular docking. Furthermore, the single-cell transcriptomes identified that ACE2 and TMPRSSs are highly coexpressed in AT2 cells of lung, along with esophageal upper epithelial cells and absorptive enterocytes. Our results provide the bioinformatics evidence for the increased spike protein cleavage of SARS-CoV-2 and indicate its potential target cells.

2.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-927806

RESUMEN

Since December 2019, a newly identified coronavirus (2019 novel coronavirus, 2019-nCov) is causing outbreak of pneumonia in one of largest cities, Wuhan, in Hubei province of China and has draw significant public health attention. The same as severe acute respiratory syndrome coronavirus (SARS-CoV), 2019-nCov enters into host cells via cell receptor angiotensin converting enzyme II (ACE2). In order to dissect the ACE2-expressing cell composition and proportion and explore a potential route of the 2019-nCov infection in digestive system infection, 4 datasets with single-cell transcriptomes of lung, esophagus, gastric, ileum and colon were analyzed. The data showed that ACE2 was not only highly expressed in the lung AT2 cells, esophagus upper and stratified epithelial cells but also in absorptive enterocytes from ileum and colon. These results indicated along with respiratory systems, digestive system is a potential routes for 2019-nCov infection. In conclusion, this study has provided the bioinformatics evidence of the potential route for infection of 2019-nCov in digestive system along with respiratory tract and may have significant impact for our healthy policy setting regards to prevention of 2019-nCoV infection.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...