Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Prev Alzheimers Dis ; 11(2): 414-421, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38374747

RESUMEN

In vivo Alzheimer's disease diagnosis and staging is traditionally based on clinical features. However, the agreement between clinical and pathological Alzheimer's disease diagnosis, whose diagnosis assessment includes amyloid and Braak histopathological tau staging, is not completely convergent. The development of positron emission tomography (PET) tracers targeting neurofibrillary tangles offers prospects for advancing the staging of Alzheimer's disease from both biological and clinical perspectives. Recent advances in radiochemistry made it possible to apply the postmortem Braak staging framework to tau-PET images obtained in vivo. Here, our aim is to provide a narrative review of the current literature on the relationship between Alzheimer's disease clinical features and the PET-based Braak staging framework. Overall, the available studies support the stepwise increase in disease severity following the advance of PET-based Braak stages, with later stages being associated with worse cognitive and clinical symptoms. In line with this, there is a trend for unimpaired cognition, mild cognitive impairment, and Alzheimer's disease dementia to be compatible with early, intermediate, and late patterns of tau deposition based on PET-based Braak stages. Moreover, neuropsychiatric symptom severity seems to be linked to the extent of tau-PET signal across Braak areas. In sum, this framework seems to correspond well with the clinical progression of Alzheimer's disease, which is an indication of its potential utility in research and clinical practice, especially for detecting preclinical tau levels in individuals without symptoms. However, further research is needed to improve the generalizability of these findings and to better understand the applications of this staging framework.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Proteínas tau , Ovillos Neurofibrilares/patología , Tomografía de Emisión de Positrones/métodos , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/patología
2.
Exp Neurol ; 374: 114713, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38325654

RESUMEN

There is evidence that maternal milieu and changes in environmental factors during the prenatal period may exert a lasting impact on the brain health of the newborn, even in case of neonatal brain hypoxia-ischemia (HI). The present study aimed to investigate the effects of maternal environmental enrichment (EE) on HI-induced energetic and metabolic failure, along with subsequent neural cell responses in the early postnatal period. Male Wistar pups born to dams exposed to maternal EE or standard conditions (SC) were randomly divided into Sham-SC, HI-SC, Sham-EE, and HI-EE groups. Neonatal HI was induced on postnatal day (PND) 3. The Na+,K+-ATPase activity, mitochondrial function and neuroinflammatory related-proteins were assessed at 24 h and 48 h after HI. MicroPET-FDG scans were used to measure glucose uptake at three time points: 24 h post-HI, PND18, and PND24. Moreover, neuronal preservation and glial cell responses were evaluated at PND18. After HI, animals exposed to maternal EE showed an increase in Na+,K+-ATPase activity, preservation of mitochondrial potential/mass ratio, and a reduction in mitochondrial swelling. Glucose uptake was preserved in HI-EE animals from PND18 onwards. Maternal EE attenuated HI-induced cell degeneration, white matter injury, and reduced astrocyte immunofluorescence. Moreover, the HI-EE group exhibited elevated levels of IL-10 and a reduction in Iba-1 positive cells. Data suggested that the regulation of AKT/ERK1/2 signaling pathways could be involved in the effects of maternal EE. This study evidenced that antenatal environmental stimuli could promote bioenergetic and neural resilience in the offspring against early HI damage, supporting the translational value of pregnancy-focused environmental treatments.


Asunto(s)
Hipoxia-Isquemia Encefálica , Enfermedades Neuromusculares , Animales , Ratas , Femenino , Masculino , Embarazo , Animales Recién Nacidos , Ratas Wistar , Encéfalo/metabolismo , Hipoxia-Isquemia Encefálica/metabolismo , Astrocitos/metabolismo , Glucosa/metabolismo , Adenosina Trifosfatasas/metabolismo
3.
J Prev Alzheimers Dis ; 10(3): 401-417, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37357281

RESUMEN

In the past years, neuroinflammation has been widely investigated in Alzheimer's disease (AD). Evidence from animal, in vivo and post-mortem studies has shown that inflammatory changes are a common feature of the disease, apparently happening in response to amyloid-beta and tau accumulation. Progress in imaging and fluid biomarkers now allows for identifying surrogate markers of neuroinflammation in living individuals, which may offer unprecedented opportunities to better understand AD pathogenesis and progression. In this context, inflammatory mediators and glial proteins (mainly derived from microglial cells and astrocytes) seem to be the most promising biomarkers. Here, we discuss the biological basis of neuroinflammation in AD, revise the proposed neuroinflammation biomarkers, describe what we have learned from anti-inflammatory drug trials, and critically discuss the potential addition of these biomarkers in the AT(N) framework.


Asunto(s)
Enfermedad de Alzheimer , Animales , Humanos , Enfermedad de Alzheimer/metabolismo , Enfermedades Neuroinflamatorias , Péptidos beta-Amiloides/metabolismo , Microglía/metabolismo , Microglía/patología , Biomarcadores/metabolismo
4.
Exp Neurol ; 330: 113317, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32304750

RESUMEN

Neonatal hypoxia ischemia (HI) is the main cause of newborn mortality and morbidity. Preclinical studies have shown that the immature rat brain is more resilient to HI injury, suggesting innate mechanisms of neuroprotection. During neonatal period brain metabolism experience changes that might greatly affect the outcome of HI injury. Therefore, the aim of the present study was to investigate how changes in brain metabolism interfere with HI outcome in different stages of CNS development. For this purpose, animals were divided into 6 groups: HIP3, HIP7 and HIP11 (HI performed at postnatal days 3, 7 and 11, respectively), and their respective shams. In vivo [18F]FDG micro positron emission tomography (microPET) imaging was performed 24 and 72 h after HI, as well as ex-vivo assessments of glucose and beta-hydroxybutyrate (BHB) oxidation. At adulthood behavioral tests and histology were performed. Behavioral and histological analysis showed greater impairments in HIP11 animals, while HIP3 rats were not affected. Changes in [18F]FDG metabolism were found only in the lesion area of HIP11, where a substantial hypometabolism was detected. Furthermore, [18F]FDG hypometabolism predicted impaired cognition and worst histological outcomes at adulthood. Finally, substrate oxidation assessments showed that glucose oxidation remained unaltered and higher level of BHB oxidation found in P3 animals, suggesting a more resilient metabolism. Overall, present results show [18F]FDG microPET predicts long-term injury outcome and suggests that higher BHB utilization is one of the mechanisms that confer the intrinsic neuroprotection to the immature brain and should be explored as a therapeutic target for treatment of HI.


Asunto(s)
Ácido 3-Hidroxibutírico/metabolismo , Glucosa/metabolismo , Hipoxia-Isquemia Encefálica/metabolismo , Neuroprotección/fisiología , Animales , Animales Recién Nacidos , Modelos Animales de Enfermedad , Masculino , Ratas , Ratas Wistar
5.
Neurotherapeutics ; 16(3): 600-610, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31270743

RESUMEN

Alzheimer's disease (AD) is an irreversible, progressive disease that slowly destroys cognitive function, such as thinking, remembering, and reasoning, to a level that one cannot carry out a daily living. As people live longer, the risk of developing AD has increased to 1 in 10 among people who are older than 65 and to almost 1 in 2 among those who are older than 85 according to a 2019 Alzheimer's Association report. As a most common cause of dementia, AD accounts for 60-80% of all dementia cases. AD is characterized by amyloid plaques and neurofibrillary tangles, composed of extracellular aggregates of amyloid-ß peptides and intracellular aggregates of hyperphosphorylated tau, respectively. Besides plaques and tangles, AD pathology includes synaptic dysfunction including loss of synapses, inflammation, brain atrophy, and brain hypometabolism, all of which contribute to progressive cognitive decline. Recent genetic studies of sporadic cases of AD have identified a score of risk factors, as reported by Hollingworth et al. (Nat Genet 43:429-435, 2001) and Lambert et al. (Nat Genet 45:1452-1458, 2013). Of all these genes, apolipoprotein E4 (APOE4) still presents the biggest risk factor for sporadic cases of AD, as stated in Saunders et al. (Neurology 43:1467-1472, 1993): depending on whether you have 1 or 2 copies of APOE4 allele, the risk increases from 3- to 12-fold, respectively, in line with Genin et al. (Mol Psychiatry 16:903-907, 2011). Besides these genetic risk factors, having type 2 diabetes (T2D), a chronic metabolic disease, is known to increase the AD risk by at least 2-fold when these individuals age, conforming to Sims-Robinson et al. (Nat Rev Neurol 6:551-559, 2010). Diabetes is reaching a pandemic scale with over 422 million people diagnosed worldwide in 2014 according to World Health Organization. Although what proportion of these diabetic patients develop AD is not known, even if 10% of diabetic patients develop AD later in their life, it would double the number of AD patients in the world. Better understanding between T2D and AD is of paramount of importance for the future. The goal of this review is to examine our current understanding on metabolic dysfunction in AD, so that a potential target can be identified in the near future.


Asunto(s)
Enfermedad de Alzheimer/etiología , Enfermedades Metabólicas/complicaciones , Enfermedad de Alzheimer/metabolismo , Animales , Encéfalo/metabolismo , Trastornos Cronobiológicos/complicaciones , Trastornos Cronobiológicos/metabolismo , Glucosa/metabolismo , Humanos , Leptina/metabolismo
6.
Alzheimers Res Ther ; 10(1): 59, 2018 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-29935546

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is a multifactorial and complex neuropathology that involves impairment of many intricate molecular mechanisms. Despite recent advances, AD pathophysiological characterization remains incomplete, which hampers the development of effective treatments. In fact, currently, there are no effective pharmacological treatments for AD. Integrative strategies such as transcription regulatory network and master regulator analyses exemplify promising new approaches to study complex diseases and may help in the identification of potential pharmacological targets. METHODS: In this study, we used transcription regulatory network and master regulator analyses on transcriptomic data of human hippocampus to identify transcription factors (TFs) that can potentially act as master regulators in AD. All expression profiles were obtained from the Gene Expression Omnibus database using the GEOquery package. A normal hippocampus transcription factor-centered regulatory network was reconstructed using the ARACNe algorithm. Master regulator analysis and two-tail gene set enrichment analysis were employed to evaluate the inferred regulatory units in AD case-control studies. Finally, we used a connectivity map adaptation to prospect new potential therapeutic interventions by drug repurposing. RESULTS: We identified TFs with already reported involvement in AD, such as ATF2 and PARK2, as well as possible new targets for future investigations, such as CNOT7, CSRNP2, SLC30A9, and TSC22D1. Furthermore, Connectivity Map Analysis adaptation suggested the repositioning of six FDA-approved drugs that can potentially modulate master regulator candidate regulatory units (Cefuroxime, Cyproterone, Dydrogesterone, Metrizamide, Trimethadione, and Vorinostat). CONCLUSIONS: Using a transcription factor-centered regulatory network reconstruction we were able to identify several potential molecular targets and six drug candidates for repositioning in AD. Our study provides further support for the use of bioinformatics tools as exploratory strategies in neurodegenerative diseases research, and also provides new perspectives on molecular targets and drug therapies for future investigation and validation in AD.


Asunto(s)
Enfermedad de Alzheimer/patología , Reposicionamiento de Medicamentos/métodos , Regulación de la Expresión Génica/fisiología , Redes Reguladoras de Genes , Hipocampo/metabolismo , Enfermedad de Alzheimer/metabolismo , Mapeo Encefálico , Femenino , Hipocampo/patología , Humanos , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...