Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancers (Basel) ; 15(24)2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38136258

RESUMEN

Glioblastoma (GB) is notoriously resistant to therapy. GB genesis and progression are driven by glioblastoma stem-like cells (GSCs). One goal for improving treatment efficacy and patient outcomes is targeting GSCs. Currently, there are no universal markers for GSCs. Glycoprotein A repetitions predominant (GARP), an anti-inflammatory protein expressed by activated regulatory T cells, was identified as a possible marker for GSCs. This study evaluated GARP for the detection of human GSCs utilizing a multidimensional experimental design that replicated several features of GB: (1) intratumoral heterogeneity, (2) cellular hierarchy (GSCs with varied degrees of self-renewal and differentiation), and (3) longitudinal GSC evolution during GB recurrence (GSCs from patient-matched newly diagnosed and recurrent GB). Our results indicate that GARP is expressed by GSCs across various cellular states and disease stages. GSCs with an increased GARP expression had reduced self-renewal but no alterations in proliferative capacity or differentiation commitment. Rather, GARP correlated inversely with the expression of GFAP and PDGFR-α, markers of astrocyte or oligodendrocyte differentiation. GARP had an abnormal nuclear localization (GARPNU+) in GSCs and was negatively associated with patient survival. The uniformity of GARP/GARPNU+ expression across different types of GSCs suggests a potential use of GARP as a marker to identify GSCs.

2.
Biomedicines ; 10(12)2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36551892

RESUMEN

Autologous platelet concentrates, like liquid platelet rich fibrin (iPRF), optimize wound healing; however, the underlying immunological mechanisms are poorly understood. Platelets, the main cellular component of iPRF, highly express the protein, Glycoprotein A repetitions predominant (GARP), on their surfaces. GARP plays a crucial role in maintaining peripheral tolerance, but its influence on the immune capacity of iPRF remains unclear. This study analyzed the interaction of iPRF with immune cells implicated in the wound healing process (human monocyte derived macrophages and CD4+ T cells) and evaluated the distinct influence of GARP on these mechanisms in vitro. GARP was determined to be expressed on the surface of platelets and to exist as a soluble factor in iPRF. Platelets derived from iPRF and iPRF itself induced a regulatory phenotype in CD4+ T cells, shown by increased expression of Foxp3 and GARP as well as decreased production of IL-2 and IFN-γ. Application of an anti-GARP antibody reversed these effects. Additionally, iPRF polarized macrophages to a "M0/M2-like" phenotype in a GARP independent manner. Altogether, this study demonstrated for the first time that the immune capacity of iPRF is mediated in part by GARP and its ability to induce regulatory CD4+ T cells.

3.
Front Immunol ; 13: 928450, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35898500

RESUMEN

Regulatory T cells (Treg) play a critical role in immune homeostasis by suppressing several aspects of the immune response. Herein, Glycoprotein A repetitions predominant (GARP), the docking receptor for latent transforming growth factor (LTGF-ß), which promotes its activation, plays a crucial role in maintaining Treg mediated immune tolerance. After activation, Treg uniquely express GARP on their surfaces. Due to its location and function, GARP may represent an important target for immunotherapeutic approaches, including the inhibition of Treg suppression in cancer or the enhancement of suppression in autoimmunity. In the present review, we will clarify the cellular and molecular regulation of GARP expression not only in human Treg but also in other cells present in the tumor microenvironment. We will also examine the overall roles of GARP in the regulation of the immune system. Furthermore, we will explore potential applications of GARP as a predictive and therapeutic biomarker as well as the targeting of GARP itself in immunotherapeutic approaches.


Asunto(s)
Neoplasias , Linfocitos T Reguladores , Autoinmunidad , Glicoproteínas/metabolismo , Humanos , Proteínas de la Membrana/metabolismo , Microambiente Tumoral
4.
Cells ; 11(6)2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35326381

RESUMEN

The cellular composition of the tumor microenvironment, including tumor, immune, stromal, and endothelial cells, significantly influences responses to cancer therapies. In this study, we analyzed the impact of oxidative stress, induced by cold atmospheric plasma (CAP), on tumor cells, T cells, and macrophages, which comprise part of the melanoma microenvironment. To accomplish this, cells were grown in different in vitro cell culture models and were treated with varying amounts of CAP. Subsequent alterations in viability, proliferation, and phenotype were analyzed via flow cytometry and metabolic alterations by Seahorse Cell Mito Stress Tests. It was found that cells generally exhibited reduced viability and proliferation, stemming from CAP induced G2/M cell cycle arrest and subsequent apoptosis, as well as increased mitochondrial stress following CAP treatment. Overall, sensitivity to CAP treatment was found to be cell type dependent with T cells being the most affected. Interestingly, CAP influenced the polarization of M0 macrophages to a "M0/M2-like" phenotype, and M1 macrophages were found to display a heightened sensitivity to CAP induced mitochondrial stress. CAP also inhibited the growth and killed melanoma cells in 2D and 3D in vitro cell culture models in a dose-dependent manner. Improving our understanding of oxidative stress, mechanisms to manipulate it, and its implications for the tumor microenvironment may help in the discovery of new therapeutic targets.


Asunto(s)
Melanoma , Gases em Plasma , Línea Celular Tumoral , Células Endoteliales/metabolismo , Humanos , Melanoma/patología , Estrés Oxidativo , Microambiente Tumoral
5.
Int J Mol Sci ; 22(3)2021 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-33498319

RESUMEN

The presence and interaction of immune cells in the tumor microenvironment is of significant importance and has a great impact on disease progression and response to therapy. Hence, their identification is of high interest for prognosis and treatment decisions. Besides detailed phenotypic analyses of immune, as well as tumor cells, spatial analyses is an important parameter in the complex interplay of neoplastic and immune cells-especially when moving into focus efforts to develop and validate new therapeutic strategies. Ex vivo analysis of tumor samples by immunohistochemistry staining methods conserves spatial information is restricted to single markers, while flow cytometry (disrupting tissue into single cell suspensions) provides access to markers in larger numbers. Nevertheless, this comes at the cost of scarifying morphological information regarding tissue localization and cell-cell contacts. Further detrimental effects incurred by, for example, tissue digestion include staining artifacts. Consequently, ongoing efforts are directed towards methods that preserve, completely or in part, spatial information, while increasing the number of markers that can potentially be interrogated to the level of conventional flow cytometric methods. Progression in multiplex immunohistochemistry in the last ten years overcame the limitation to 1-2 markers in classical staining methods using DAB with counter stains or even pure chemical staining methods. In this study, we compared the multiplex method Chipcytometry to flow cytometry and classical IHCP using DAB and hematoxylin. Chipcytometry uses frozen or paraffin-embedded tissue sections stained with readily available commercial fluorophore-labeled antibodies in repetitive cycles of staining and bleaching. The iterative staining approach enables sequential analysis of a virtually unlimited number of markers on the same sample, thereby identifying immune cell subpopulations in the tumor microenvironment in the present study in a humanized mouse melanoma model.


Asunto(s)
Melanoma/inmunología , Microambiente Tumoral/inmunología , Animales , Línea Celular Tumoral , Células Cultivadas , Femenino , Citometría de Flujo/métodos , Antígeno HLA-A2/genética , Antígeno HLA-A2/inmunología , Humanos , Inmunohistoquímica/métodos , Inmunofenotipificación/métodos , Melanoma/patología , Ratones , Persona de Mediana Edad , Transgenes
6.
Cancers (Basel) ; 12(12)2020 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-33291452

RESUMEN

Platelets have been recently described as an important component of the innate and adaptive immunity through their interaction with immune cells. However, information on the platelet-T cell interaction in immune-mediated diseases remains limited. Glycoprotein A repetitions predominant (GARP) expressed on platelets and on activated regulatory T cells (Treg) is involved in the regulation of peripheral immune responses by modulating the bioavailability of transforming growth factor ß (TGF-ß). Soluble GARP (sGARP) exhibits strong regulatory and anti-inflammatory capacities both in vitro and in vivo, leading to the induction of peripheral Treg. Herein, we investigated the effect of platelet-derived GARP on the differentiation, phenotype, and function of T effector cells. CD4+CD25- T cells cocultured with platelets upregulated FoxP3, the master transcription factor for Treg, were anergic, and were strongly suppressive. These effects were reversed by using a blocking anti-GARP antibody, indicating a dependency on GARP. Importantly, melanoma patients in different stages of disease showed a significant upregulation of GARP on the platelet surface, correlating to a reduced responsiveness to immunotherapy. In conclusion, our data indicate that platelets induce peripheral Treg via GARP. These findings might contribute to diseases such as cancer-associated thrombocytosis, wherein poor prognosis and metastasis are associated with high counts of circulating platelets.

7.
Cells ; 9(10)2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-33003620

RESUMEN

Lipid exchange among biological membranes, lipoprotein particles, micelles, and liposomes is an important yet underrated phenomenon with repercussions throughout the life sciences. The premature loss of lipid molecules from liposomal formulations severely impacts therapeutic applications of the latter and thus limits the type of lipids and lipid conjugates available for fine-tuning liposomal properties. While cholesterol derivatives, with their irregular lipophilic surface shape, are known to readily undergo lipid exchange and interconvert, e.g., with serum, the situation is unclear for lipids with regular, linear-shaped alkyl chains. This study compares the propensity of fluorescence-labeled lipid conjugates of systematically varied lengths to migrate from liposomal particles consisting mainly of egg phosphatidyl choline 3 (EPC3) and cholesterol into biomembranes. We show that dialkyl glyceryl lipids with chains of 18-20 methylene units are inherently stable in liposomal membranes. In contrast, C16 lipids show some lipid exchange, albeit significantly less than comparable cholesterol conjugates. Remarkably, the C18 chain length, which confers noticeable anchor stability, corresponds to the typical chain length in biological membranes.


Asunto(s)
Química Clic/métodos , Sistemas de Liberación de Medicamentos/métodos , Lípidos/química , Liposomas/química , Línea Celular Tumoral , Dispersión Dinámica de Luz , Citometría de Flujo , Glicerol/química , Humanos , Lípidos/análisis , Liposomas/síntesis química , Membranas Artificiales , Microscopía Fluorescente , Polímeros/química
8.
Int J Mol Sci ; 20(15)2019 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-31357555

RESUMEN

Glycoprotein A repetition predominant (GARP), a specific surface molecule of activated regulatory T cells, has been demonstrated to significantly contribute to tolerance in humans by induction of peripheral Treg and regulatory M2-macrophages and by inhibition of (tumorantigen-specific) T effector cells. Previous work identified GARP on Treg, and also GARP on the surface of several malignant tumors, as well as in a soluble form being shedded from their surface, contributing to tumor immune escape. Preliminary results also showed GARP expression on brain metastases of malignant melanoma. On the basis of these findings, we investigated whether GARP is also expressed on primary brain tumors. We showed GARP expression on glioblastoma (GB) cell lines and primary GB tissue, as well as on low-grade glioma, suggesting an important influence on the tumor micromilieu and the regulation of immune responses also in primary cerebral tumors. This was supported by the finding that GB cells led to a reduced, in part GARP-dependent effector T cell function (reduced proliferation and reduced cytokine secretion) in coculture experiments. Interestingly, GARP was localized not only on the cell surface but also in the cytoplasmatic, as well as nuclear compartments in tumor cells. Our findings reveal that GARP, as an immunoregulatory molecule, is located on, as well as in, tumor cells of GB and low-grade glioma, inhibiting effector T cell function, and thus contributing to the immunosuppressive tumor microenvironment of primary brain tumors. As GARP is expressed on activated Treg, as well as on brain tumors, it may be an interesting target for new immunotherapeutic approaches using antibody-based strategies as this indication.


Asunto(s)
Glioblastoma/etiología , Glioblastoma/metabolismo , Inmunomodulación , Proteínas de la Membrana/metabolismo , Microambiente Tumoral , Anciano , Anciano de 80 o más Años , Biomarcadores , Terapia Combinada , Femenino , Regulación Neoplásica de la Expresión Génica , Glioblastoma/diagnóstico , Glioblastoma/terapia , Humanos , Inmunohistoquímica , Inmunomodulación/genética , Imagen por Resonancia Magnética , Masculino , Proteínas de la Membrana/genética , Persona de Mediana Edad , Clasificación del Tumor , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Microambiente Tumoral/genética
9.
Cell Immunol ; 343: 103713, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-29129292

RESUMEN

Myeloid cells are the most abundant cells in the tumor microenvironment (TME). The tumor recruits and modulates endogenous myeloid cells to tumor-associated macrophages (TAM), dendritic cells (DC), myeloid-derived suppressor cells (MDSC) and neutrophils (TAN), to sustain an immunosuppressive environment. Pathologically overexpressed mediators produced by cancer cells like granulocyte-macrophage colony-stimulating- and vascular endothelial growth factor induce myelopoiesis in the bone marrow. Excess of myeloid cells in the blood, periphery and tumor has been associated with tumor burden. In cancer, myeloid cells are kept at an immature state of differentiation to be diverted to an immunosuppressive phenotype. Here, we review human myeloid cells in the TME and the mechanisms for sustaining the hallmarks of cancer. Simultaneously, we provide an introduction into current and novel therapeutic approaches to redirect myeloid cells from a cancer promoting to a rather inflammatory, cancer inhibiting phenotype. In addition, the role of platelets for tumor promotion is discussed.


Asunto(s)
Células Mieloides/inmunología , Neoplasias/inmunología , Microambiente Tumoral , Animales , Humanos , Inmunoterapia , Neoplasias/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...