Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 49(15): 9273-9, 2015 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-26176879

RESUMEN

Iron-catalyzed diesel particle filters (DPFs) are widely used for particle abatement. Active catalyst particles, so-called fuel-borne catalysts (FBCs), are formed in situ, in the engine, when combusting precursors, which were premixed with the fuel. The obtained iron oxide particles catalyze soot oxidation in filters. Iron-catalyzed DPFs are considered as safe with respect to their potential to form polychlorinated dibenzodioxins/furans (PCDD/Fs). We reported that a bimetallic potassium/iron FBC supported an intense PCDD/F formation in a DPF. Here, we discuss the impact of fatty acid methyl ester (FAME) biofuel on PCDD/F emissions. The iron-catalyzed DPF indeed supported a PCDD/F formation with biofuel but remained inactive with petroleum-derived diesel fuel. PCDD/F emissions (I-TEQ) increased 23-fold when comparing biofuel and diesel data. Emissions of 2,3,7,8-TCDD, the most toxic congener [toxicity equivalence factor (TEF) = 1.0], increased 90-fold, and those of 2,3,7,8-TCDF (TEF = 0.1) increased 170-fold. Congener patterns also changed, indicating a preferential formation of tetra- and penta-chlorodibenzofurans. Thus, an inactive iron-catalyzed DPF becomes active, supporting a PCDD/F formation, when operated with biofuel containing impurities of potassium. Alkali metals are inherent constituents of biofuels. According to the current European Union (EU) legislation, levels of 5 µg/g are accepted. We conclude that risks for a secondary PCDD/F formation in iron-catalyzed DPFs increase when combusting potassium-containing biofuels.


Asunto(s)
Biocombustibles/análisis , Filtración/instrumentación , Furanos/química , Gasolina/análisis , Hierro/química , Dibenzodioxinas Policloradas/análogos & derivados , Contaminantes Atmosféricos/análisis , Catálisis , Cloro/química , Ambiente , Oxidación-Reducción , Dibenzodioxinas Policloradas/química , Emisiones de Vehículos/análisis
2.
Environ Sci Technol ; 47(12): 6510-7, 2013 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-23713673

RESUMEN

Catalytic diesel particle filters (DPFs) have evolved to a powerful environmental technology. Several metal-based, fuel soluble catalysts, so-called fuel-borne catalysts (FBCs), were developed to catalyze soot combustion and support filter regeneration. Mainly iron- and cerium-based FBCs have been commercialized for passenger cars and heavy-duty vehicle applications. We investigated a new iron/potassium-based FBC used in combination with an uncoated silicon carbide filter and report effects on emissions of polychlorinated dibenzodioxins/furans (PCDD/Fs). The PCDD/F formation potential was assessed under best and worst case conditions, as required for filter approval under the VERT protocol. TEQ-weighted PCDD/F emissions remained low when using the Fe/K catalyst (37/7.5 µg/g) with the filter and commercial, low-sulfur fuel. The addition of chlorine (10 µg/g) immediately led to an intense PCDD/F formation in the Fe/K-DPF. TEQ-based emissions increased 51-fold from engine-out levels of 95 to 4800 pg I-TEQ/L after the DPF. Emissions of 2,3,7,8-TCDD, the most toxic congener (TEF = 1.0), increased 320-fold, those of 2,3,7,8-TCDF (TEF = 0.1) even 540-fold. Remarkable pattern changes were noticed, indicating a preferential formation of tetrachlorinated dibenzofurans. It has been shown that potassium acts as a structural promoter inducing the formation of magnetite (Fe3O4) rather than hematite (Fe2O3). This may alter the catalytic properties of iron. But the chemical nature of this new catalyst is yet unknown, and we are far from an established mechanism for this new pathway to PCDD/Fs. In conclusion, the iron/potassium-catalyzed DPF has a high PCDD/F formation potential, similar to the ones of copper-catalyzed filters, the latter are prohibited by Swiss legislation.


Asunto(s)
Filtración/métodos , Hierro/química , Dibenzodioxinas Policloradas/análogos & derivados , Potasio/química , Benzofuranos , Catálisis , Dibenzodioxinas Policloradas/química
3.
Environ Sci Technol ; 46(24): 13317-25, 2012 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-23214996

RESUMEN

The impact of a combined diesel particle filter-deNO(x) system (DPN) on emissions of reactive nitrogen compounds (RNCs) was studied varying the urea feed factor (α), temperature, and residence time, which are key parameters of the deNO(x) process. The DPN consisted of a platinum-coated cordierite filter and a vanadia-based deNO(x) catalyst supporting selective catalytic reduction (SCR) chemistry. Ammonia (NH3) is produced in situ from thermolysis of urea and hydrolysis of isocyanic acid (HNCO). HNCO and NH3 are both toxic and highly reactive intermediates. The deNO(x) system was only part-time active in the ISO8178/4 C1cycle. Urea injection was stopped and restarted twice. Mean NO and NO2 conversion efficiencies were 80%, 95%, 97% and 43%, 87%, 99%, respectively, for α = 0.8, 1.0, and 1.2. HNCO emissions increased from 0.028 g/h engine-out to 0.18, 0.25, and 0.26 g/h at α = 0.8, 1.0, and 1.2, whereas NH3 emissions increased from <0.045 to 0.12, 1.82, and 12.8 g/h with maxima at highest temperatures and shortest residence times. Most HNCO is released at intermediate residence times (0.2-0.3 s) and temperatures (300-400 °C). Total RNC efficiencies are highest at α = 1.0, when comparable amounts of reduced and oxidized compounds are released. The DPN represents the most advanced system studied so far under the VERT protocol achieving high conversion efficiencies for particles, NO, NO2, CO, and hydrocarbons. However, we observed a trade-off between deNO(x) efficiency and secondary emissions. Therefore, it is important to adopt such DPN technology to specific application conditions to take advantage of reduced NO(x) and particle emissions while avoiding NH3 and HNCO slip.


Asunto(s)
Filtración/instrumentación , Gasolina/análisis , Nitratos/análisis , Nitritos/análisis , Material Particulado/química , Especies de Nitrógeno Reactivo/análisis , Emisiones de Vehículos/análisis , Catálisis , Ambiente , Óxido Nítrico/análisis , Temperatura , Factores de Tiempo , Torque , Urea/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...