Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 7462, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37985661

RESUMEN

Trypanosomes are protozoan parasites that cycle between insect and mammalian hosts and are the causative agent of sleeping sickness. Here, we describe the changes of pseudouridine (Ψ) modification on rRNA in the two life stages of the parasite using four different genome-wide approaches. CRISPR-Cas9 knock-outs of all four snoRNAs guiding Ψ on helix 69 (H69) of the large rRNA subunit were lethal. A single knock-out of a snoRNA guiding Ψ530 on H69 altered the composition of the 80S monosome. These changes specifically affected the translation of only a subset of proteins. This study correlates a single site Ψ modification with changes in ribosomal protein stoichiometry, supported by a high-resolution cryo-EM structure. We propose that alteration in rRNA modifications could generate ribosomes preferentially translating state-beneficial proteins.


Asunto(s)
Parásitos , Trypanosoma brucei brucei , Animales , Parásitos/genética , Trypanosoma brucei brucei/metabolismo , Seudouridina/metabolismo , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , Ribosomas/metabolismo , ARN Nucleolar Pequeño/genética , ARN Nucleolar Pequeño/metabolismo , Mamíferos/genética
2.
FEBS Open Bio ; 12(7): 1419-1434, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35583751

RESUMEN

Ribosomes, the cellular organelles translating the genetic code to proteins, are assemblies of RNA chains and many proteins (RPs) arranged in precise fine-tuned interwoven structures. Mutated ribosomal genes cause ribosomopathies, including Diamond Blackfan anemia (DBA, a rare heterogeneous red-cell aplasia connected to ribosome malfunction) or failed biogenesis. Combined bioinformatical, structural, and predictive analyses of potential consequences of possibly expressed mutations in eS19, the protein product of the highly mutated RPS19, suggest that mutations in its exposed surface could alter its positioning during assembly and consequently prevent biogenesis, implying a natural selective strategy to avoid malfunctions in ribosome assembly. A search for RPS19 pseudogenes indicated > 90% sequence identity with the wild-type, hinting at its expression in cases of absent or truncated gene products.


Asunto(s)
Anemia de Diamond-Blackfan , Anemia de Diamond-Blackfan/genética , Anemia de Diamond-Blackfan/metabolismo , Humanos , Mutación/genética , ARN/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Ribosomas/genética , Ribosomas/metabolismo
3.
mBio ; 13(2): e0030622, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35348349

RESUMEN

The ribosome, a multicomponent assembly consisting of RNA and proteins, is a pivotal macromolecular machine that translates the genetic code into proteins. The large ribosomal subunit rRNA helix 68 (H68) is a key element in the protein synthesis process, as it coordinates the coupled movements of the actors involved in translocation, including the tRNAs and L1 stalk. Examination of cryo-electron microscopy (cryo-EM) structures of ribosomes incubated for various time durations at physiological temperatures led to the identification of functionally relevant H68 movements. These movements assist the transition of the L1 stalk between its open and closed states. H68 spatial flexibility and its significance to the protein synthesis process were confirmed through its effective targeting with antisense PNA oligomers. Our results suggest that H68 is actively involved in ribosome movements that are central to the elongation process. IMPORTANCE The mechanism that regulates the translocation step in ribosomes during protein synthesis is not fully understood. In this work, cryo-EM techniques used to image ribosomes from Staphylococcus aureus after incubation at physiological temperature allowed the identification of a conformation of the helix 68 that has never been observed so far. We then propose a mechanism in which such helix, switching between two different conformations, actively coordinates the translocation step, shedding light on the dynamics of ribosomal components. In addition, the relevance of helix 68 to ribosome function and its potential as an antibiotic target was proved by inhibiting Staphylococcus aureus ribosomes activity in vitro using oligomers with sequence complementarity.


Asunto(s)
Biosíntesis de Proteínas , Ribosomas , Microscopía por Crioelectrón/métodos , Modelos Moleculares , ARN de Transferencia/metabolismo , Ribosomas/metabolismo
4.
Nucleic Acids Res ; 50(3): 1770-1782, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35100413

RESUMEN

Giardiasis is a disease caused by the protist Giardia lamblia. As no human vaccines have been approved so far against it, and resistance to current drugs is spreading, new strategies for combating giardiasis need to be developed. The G. lamblia ribosome may provide a promising therapeutic target due to its distinct sequence differences from ribosomes of most eukaryotes and prokaryotes. Here, we report the cryo-electron microscopy structure of the G. lamblia (WB strain) ribosome determined at 2.75 Å resolution. The ribosomal RNA is the shortest known among eukaryotes, and lacks nearly all the eukaryote-specific ribosomal RNA expansion segments. In contrast, the ribosomal proteins are typically eukaryotic with some species-specific insertions/extensions. Most typical inter-subunit bridges are maintained except for one missing contact site. Unique structural features are located mainly at the ribosome's periphery. These may be exploited as target sites for the design of new compounds that inhibit selectively the parasite's ribosomal activity.


Asunto(s)
Giardia lamblia , Giardiasis , Parásitos , Animales , Microscopía por Crioelectrón , Eucariontes/genética , Giardia lamblia/genética , Giardiasis/metabolismo , Humanos , Parásitos/genética , ARN Ribosómico/metabolismo , Ribosomas/metabolismo
5.
Nucleic Acids Res ; 49(16): 9560-9573, 2021 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-34417608

RESUMEN

Macrolides have been effective clinical antibiotics for over 70 years. They inhibit protein biosynthesis in bacterial pathogens by narrowing the nascent protein exit tunnel in the ribosome. The macrolide class of natural products consist of a macrolactone ring linked to one or more sugar molecules. Most of the macrolides used currently are semi-synthetic erythromycin derivatives, composed of a 14- or 15-membered macrolactone ring. Rapidly emerging resistance in bacterial pathogens is among the most urgent global health challenges, which render many antibiotics ineffective, including next-generation macrolides. To address this threat and advance a longer-term plan for developing new antibiotics, we demonstrate how 16-membered macrolides overcome erythromycin resistance in clinically isolated Staphylococcus aureus strains. By determining the structures of complexes of the large ribosomal subunit of Deinococcus radiodurans (D50S) with these 16-membered selected macrolides, and performing anti-microbial studies, we identified resistance mechanisms they may overcome. This new information provides important insights toward the rational design of therapeutics that are effective against drug resistant human pathogens.


Asunto(s)
Macrólidos/química , Micromonospora/química , Antibacterianos/química , Antibacterianos/farmacología , Antiinfecciosos/química , Antiinfecciosos/farmacología , Eritromicina/química , Humanos , Macrólidos/farmacología , Pruebas de Sensibilidad Microbiana , Inhibidores de la Síntesis de la Proteína/farmacología , Ribosomas/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/patogenicidad
6.
Proc Natl Acad Sci U S A ; 116(44): 22275-22281, 2019 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-31611393

RESUMEN

Resistance to antibiotics has become a major threat to modern medicine. The ribosome plays a fundamental role in cell vitality by the translation of the genetic code into proteins; hence, it is a major target for clinically useful antibiotics. We report here the cryo-electron microscopy structures of the ribosome of a pathogenic aminoglycoside (AG)-resistant Pseudomonas aeruginosa strain, as well as of a nonresistance strain isolated from a cystic fibrosis patient. The structural studies disclosed defective ribosome complex formation due to a conformational change of rRNA helix H69, an essential intersubunit bridge, and a secondary binding site of the AGs. In addition, a stable conformation of nucleotides A1486 and A1487, pointing into helix h44, is created compared to a non-AG-bound ribosome. We suggest that altering the conformations of ribosomal protein uL6 and rRNA helix H69, which interact with initiation-factor IF2, interferes with proper protein synthesis initiation.


Asunto(s)
Fibrosis Quística/microbiología , Pseudomonas aeruginosa/ultraestructura , Ribosomas/química , Secuencias de Aminoácidos , Aminoglicósidos/farmacología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Microscopía por Crioelectrón , Farmacorresistencia Bacteriana , Humanos , Mutación , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/aislamiento & purificación , Proteínas Ribosómicas/química , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Ribosomas/genética , Ribosomas/ultraestructura
7.
Sci Rep ; 9(1): 11460, 2019 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-31391518

RESUMEN

The clinical use of the antibiotic erythromycin (ery) is hampered owing to the spread of resistance genes that are mostly mutating rRNA around the ery binding site at the entrance to the protein exit tunnel. Additional effective resistance mechanisms include deletion or insertion mutations in ribosomal protein uL22, which lead to alterations of the exit tunnel shape, located 16 Å away from the drug's binding site. We determined the cryo-EM structures of the Staphylococcus aureus 70S ribosome, and its ery bound complex with a two amino acid deletion mutation in its ß hairpin loop, which grants the bacteria resistance to ery. The structures reveal that, although the binding of ery is stable, the movement of the flexible shorter uL22 loop towards the tunnel wall creates a wider path for nascent proteins, thus enabling bypass of the barrier formed by the drug. Moreover, upon drug binding, the tunnel widens further.


Asunto(s)
Antibacterianos/farmacología , Proteínas Bacterianas/ultraestructura , Farmacorresistencia Bacteriana/genética , Eritromicina/farmacología , Proteínas Ribosómicas/ultraestructura , Staphylococcus aureus/efectos de los fármacos , Antibacterianos/uso terapéutico , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Microscopía por Crioelectrón , Eritromicina/uso terapéutico , Humanos , Mutación , Unión Proteica/genética , ARN Ribosómico 23S/metabolismo , ARN Ribosómico 23S/ultraestructura , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Grandes Bacterianas/efectos de los fármacos , Subunidades Ribosómicas Grandes Bacterianas/metabolismo , Subunidades Ribosómicas Grandes Bacterianas/ultraestructura , Ribosomas/efectos de los fármacos , Ribosomas/metabolismo , Ribosomas/ultraestructura , Imagen Individual de Molécula , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/genética , Staphylococcus aureus/ultraestructura
8.
Nat Commun ; 8(1): 1589, 2017 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-29150609

RESUMEN

Leishmania is a single-celled eukaryotic parasite afflicting millions of humans worldwide, with current therapies limited to a poor selection of drugs that mostly target elements in the parasite's cell envelope. Here we determined the atomic resolution electron cryo-microscopy (cryo-EM) structure of the Leishmania ribosome in complex with paromomycin (PAR), a highly potent compound recently approved for treatment of the fatal visceral leishmaniasis (VL). The structure reveals the mechanism by which the drug induces its deleterious effects on the parasite. We further show that PAR interferes with several aspects of cytosolic translation, thus highlighting the cytosolic rather than the mitochondrial ribosome as the primary drug target. The results also highlight unique as well as conserved elements in the PAR-binding pocket that can serve as hotspots for the development of novel therapeutics.


Asunto(s)
Leishmania/metabolismo , Paromomicina/metabolismo , Ribosomas/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Sitios de Unión/genética , Microscopía por Crioelectrón , Citosol/efectos de los fármacos , Citosol/metabolismo , Humanos , Leishmania/genética , Leishmania/ultraestructura , Modelos Moleculares , Paromomicina/química , Paromomicina/farmacología , Biosíntesis de Proteínas/efectos de los fármacos , ARN Ribosómico/química , ARN Ribosómico/metabolismo , Proteínas Ribosómicas/química , Proteínas Ribosómicas/metabolismo , Ribosomas/química , Ribosomas/ultraestructura , Homología de Secuencia de Aminoácido
9.
Nucleic Acids Res ; 45(17): 10284-10292, 2017 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-28973455

RESUMEN

Antimicrobial resistance within a wide range of pathogenic bacteria is an increasingly serious threat to global public health. Among these pathogenic bacteria are the highly resistant, versatile and possibly aggressive bacteria, Staphylococcus aureus. Lincosamide antibiotics were proved to be effective against this pathogen. This small, albeit important group of antibiotics is mostly active against Gram-positive bacteria, but also used against selected Gram-negative anaerobes and protozoa. S. aureus resistance to lincosamides can be acquired by modifications and/or mutations in the rRNA and rProteins. Here, we present the crystal structures of the large ribosomal subunit of S. aureus in complex with the lincosamides lincomycin and RB02, a novel semisynthetic derivative and discuss the biochemical aspects of the in vitro potency of various lincosamides. These results allow better understanding of the drugs selectivity as well as the importance of the various chemical moieties of the drug for binding and inhibition.


Asunto(s)
Lincosamidas/farmacología , Subunidades Ribosómicas Grandes Bacterianas/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Benzamidas/química , Benzamidas/farmacología , Sitios de Unión , Clindamicina/química , Clindamicina/farmacología , Cristalización , Cristalografía por Rayos X , Farmacorresistencia Microbiana , Galactósidos/química , Galactósidos/farmacología , Enlace de Hidrógeno , Lincomicina/química , Lincomicina/farmacología , Lincosamidas/química , Estructura Molecular , Subunidades Ribosómicas Grandes Bacterianas/ultraestructura , Staphylococcus aureus/ultraestructura , Electricidad Estática , Relación Estructura-Actividad
10.
Nat Commun ; 8(1): 723, 2017 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-28959035

RESUMEN

Formation of 100S ribosome dimer is generally associated with translation suppression in bacteria. Trans-acting factors ribosome modulation factor (RMF) and hibernating promoting factor (HPF) were shown to directly mediate this process in E. coli. Gram-positive S. aureus lacks an RMF homolog and the structural basis for its 100S formation was not known. Here we report the cryo-electron microscopy structure of the native 100S ribosome from S. aureus, revealing the molecular mechanism of its formation. The structure is distinct from previously reported analogs and relies on the HPF C-terminal extension forming the binding platform for the interactions between both of the small ribosomal subunits. The 100S dimer is formed through interactions between rRNA h26, h40, and protein uS2, involving conformational changes of the head as well as surface regions that could potentially prevent RNA polymerase from docking to the ribosome.Under conditions of nutrient limitation, bacterial ribosomes undergo dimerization, forming a 100S complex that is translationally inactive. Here the authors present the structural basis for formation of the 100S complexes in Gram-positive bacteria, shedding light on the mechanism of translation suppression by the ribosome-silencing factors.


Asunto(s)
Ribosomas/química , Ribosomas/metabolismo , Staphylococcus aureus/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Microscopía por Crioelectrón , Dimerización , Unión Proteica , Proteínas Ribosómicas/química , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Ribosomas/genética , Staphylococcus aureus/química , Staphylococcus aureus/genética , Staphylococcus aureus/ultraestructura
11.
Structure ; 25(8): 1233-1241.e3, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28689968

RESUMEN

Erythromycin is a clinically useful antibiotic that binds to an rRNA pocket in the ribosomal exit tunnel. Commonly, resistance to erythromycin is acquired by alterations of rRNA nucleotides that interact with the drug. Mutations in the ß hairpin of ribosomal protein uL22, which is rather distal to the erythromycin binding site, also generate resistance to the antibiotic. We have determined the crystal structure of the large ribosomal subunit from Deinococcus radiodurans with a three amino acid insertion within the ß hairpin of uL22 that renders resistance to erythromycin. The structure reveals a shift of the ß hairpin of the mutated uL22 toward the interior of the exit tunnel, triggering a cascade of structural alterations of rRNA nucleotides that propagate to the erythromycin binding pocket. Our findings support recent studies showing that the interactions between uL22 and specific sequences within nascent chains trigger conformational rearrangements in the exit tunnel.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Ribosómicas/química , Antibacterianos/química , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Deinococcus/química , Eritromicina/química , Eritromicina/farmacología , Mutación , Unión Proteica , ARN Ribosómico/química , ARN Ribosómico/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo
12.
mBio ; 8(3)2017 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-28487427

RESUMEN

An unorthodox, surprising mechanism of resistance to the antibiotic linezolid was revealed by cryo-electron microscopy (cryo-EM) in the 70S ribosomes from a clinical isolate of Staphylococcus aureus This high-resolution structural information demonstrated that a single amino acid deletion in ribosomal protein uL3 confers linezolid resistance despite being located 24 Å away from the linezolid binding pocket in the peptidyl-transferase center. The mutation induces a cascade of allosteric structural rearrangements of the rRNA that ultimately results in the alteration of the antibiotic binding site.IMPORTANCE The growing burden on human health caused by various antibiotic resistance mutations now includes prevalent Staphylococcus aureus resistance to last-line antimicrobial drugs such as linezolid and daptomycin. Structure-informed drug modification represents a frontier with respect to designing advanced clinical therapies, but success in this strategy requires rapid, facile means to shed light on the structural basis for drug resistance (D. Brown, Nat Rev Drug Discov 14:821-832, 2015, https://doi.org/10.1038/nrd4675). Here, detailed structural information demonstrates that a common mechanism is at play in linezolid resistance and provides a step toward the redesign of oxazolidinone antibiotics, a strategy that could thwart known mechanisms of linezolid resistance.


Asunto(s)
Antibacterianos/metabolismo , Linezolid/metabolismo , Ribosomas/química , Staphylococcus aureus/metabolismo , Antibacterianos/farmacología , Sitios de Unión , Microscopía por Crioelectrón , Cristalografía por Rayos X , Farmacorresistencia Bacteriana , Linezolid/farmacología , Pruebas de Sensibilidad Microbiana , Mutación , Peptidil Transferasas/metabolismo , Proteína Ribosomal L3 , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/genética , Staphylococcus aureus/ultraestructura
13.
Sci Rep ; 6: 39004, 2016 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-27958389

RESUMEN

The increasing appearance of pathogenic bacteria with antibiotic resistance is a global threat. Consequently, clinically available potent antibiotics that are active against multidrug resistant pathogens are becoming exceedingly scarce. Ribosomes are a main target for antibiotics, and hence are an objective for novel drug development. Lefamulin, a semi-synthetic pleuromutilin compound highly active against multi-resistant pathogens, is a promising antibiotic currently in phase III trials for the treatment of community-acquired bacterial pneumonia in adults. The crystal structure of the Staphylococcus aureus large ribosomal subunit in complex with lefamulin reveals its protein synthesis inhibition mechanism and the rationale for its potency. In addition, analysis of the bacterial and eukaryotes ribosome structures around the pleuromutilin binding pocket has elucidated the key for the drug's selectivity.


Asunto(s)
Antibacterianos , Subunidades Ribosómicas Grandes Bacterianas , Staphylococcus aureus , Antibacterianos/química , Antibacterianos/farmacología , Proteínas Bacterianas/biosíntesis , Ensayos Clínicos Fase III como Asunto , Diterpenos/química , Diterpenos/farmacología , Humanos , Compuestos Policíclicos , Biosíntesis de Proteínas/efectos de los fármacos , Subunidades Ribosómicas Grandes Bacterianas/química , Subunidades Ribosómicas Grandes Bacterianas/metabolismo , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/metabolismo , Infecciones Estafilocócicas/patología , Staphylococcus aureus/química , Staphylococcus aureus/crecimiento & desarrollo , Pleuromutilinas
14.
Proc Natl Acad Sci U S A ; 113(44): E6796-E6805, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27791159

RESUMEN

Two structurally unique ribosomal antibiotics belonging to the orthosomycin family, avilamycin and evernimicin, possess activity against Enterococci, Staphylococci, and Streptococci, and other Gram-positive bacteria. Here, we describe the high-resolution crystal structures of the eubacterial large ribosomal subunit in complex with them. Their extended binding sites span the A-tRNA entrance corridor, thus inhibiting protein biosynthesis by blocking the binding site of the A-tRNA elbow, a mechanism not shared with other known antibiotics. Along with using the ribosomal components that bind and discriminate the A-tRNA-namely, ribosomal RNA (rRNA) helices H89, H91, and ribosomal proteins (rProtein) uL16-these structures revealed novel interactions with domain 2 of the CTC protein, a feature typical to various Gram-positive bacteria. Furthermore, analysis of these structures explained how single nucleotide mutations and methylations in helices H89 and H91 confer resistance to orthosomycins and revealed the sequence variations in 23S rRNA nucleotides alongside the difference in the lengths of the eukaryotic and prokaryotic α1 helix of protein uL16 that play a key role in the selectivity of those drugs. The accurate interpretation of the crystal structures that could be performed beyond that recently reported in cryo-EM models provide structural insights that may be useful for the design of novel pathogen-specific antibiotics, and for improving the potency of orthosomycins. Because both drugs are extensively metabolized in vivo, their environmental toxicity is very low, thus placing them at the frontline of drugs with reduced ecological hazards.


Asunto(s)
Aminoglicósidos/farmacología , Proteínas Bacterianas/efectos de los fármacos , Sitios de Unión/efectos de los fármacos , Oligosacáridos/farmacología , ARN de Transferencia/efectos de los fármacos , Proteínas Ribosómicas/efectos de los fármacos , Aminoglicósidos/química , Antibacterianos/farmacología , Cristalografía por Rayos X , Farmacorresistencia Bacteriana/efectos de los fármacos , Farmacorresistencia Bacteriana/genética , Bacterias Grampositivas/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Mutación , Conformación de Ácido Nucleico , Oligosacáridos/química , Biosíntesis de Proteínas/efectos de los fármacos , ARN Ribosómico , ARN Ribosómico 23S/efectos de los fármacos , ARN Ribosómico 23S/genética , ARN de Transferencia/metabolismo , Proteínas Ribosómicas/metabolismo , Ribosomas/efectos de los fármacos , Ribosomas/metabolismo , Alineación de Secuencia , Especificidad de la Especie
15.
Sci Rep ; 6: 37138, 2016 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-27849042

RESUMEN

Conformational changes associated with ribosome function have been identified by X-ray crystallography and cryo-electron microscopy. These methods, however, inform poorly on timescales. Neutron scattering is well adapted for direct measurements of thermal molecular dynamics, the 'lubricant' for the conformational fluctuations required for biological activity. The method was applied to compare water dynamics and conformational fluctuations in the 30 S and 50 S ribosomal subunits from Haloarcula marismortui, under high salt, stable conditions. Similar free and hydration water diffusion parameters are found for both subunits. With respect to the 50 S subunit, the 30 S is characterized by a softer force constant and larger mean square displacements (MSD), which would facilitate conformational adjustments required for messenger and transfer RNA binding. It has been shown previously that systems from mesophiles and extremophiles are adapted to have similar MSD under their respective physiological conditions. This suggests that the results presented are not specific to halophiles in high salt but a general property of ribosome dynamics under corresponding, active conditions. The current study opens new perspectives for neutron scattering characterization of component functional molecular dynamics within the ribosome.


Asunto(s)
Haloarcula marismortui/química , Simulación de Dinámica Molecular , ARN de Archaea/química , ARN Mensajero/química , Subunidades Ribosómicas Grandes de Archaea/química , Subunidades Ribosómicas Pequeñas de Archaea/química , Difracción de Neutrones
16.
Antibiotics (Basel) ; 5(3)2016 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-27367739

RESUMEN

Most ribosomal antibiotics obstruct distinct ribosomal functions. In selected cases, in addition to paralyzing vital ribosomal tasks, some ribosomal antibiotics are involved in cellular regulation. Owing to the global rapid increase in the appearance of multi-drug resistance in pathogenic bacterial strains, and to the extremely slow progress in developing new antibiotics worldwide, it seems that, in addition to the traditional attempts at improving current antibiotics and the intensive screening for additional natural compounds, this field should undergo substantial conceptual revision. Here, we highlight several contemporary issues, including challenging the common preference of broad-range antibiotics; the marginal attention to alterations in the microbiome population resulting from antibiotics usage, and the insufficient awareness of ecological and environmental aspects of antibiotics usage. We also highlight recent advances in the identification of species-specific structural motifs that may be exploited for the design and the creation of novel, environmental friendly, degradable, antibiotic types, with a better distinction between pathogens and useful bacterial species in the microbiome. Thus, these studies are leading towards the design of "pathogen-specific antibiotics," in contrast to the current preference of broad range antibiotics, partially because it requires significant efforts in speeding up the discovery of the unique species motifs as well as the clinical pathogen identification.

17.
Cell Rep ; 16(2): 288-294, 2016 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-27373148

RESUMEN

Leishmania is a single-cell eukaryotic parasite of the Trypanosomatidae family, whose members cause an array of tropical diseases. The often fatal outcome of infections, lack of effective vaccines, limited selection of therapeutic drugs, and emerging resistant strains, underline the need to develop strategies to combat these pathogens. The Trypanosomatid ribosome has recently been highlighted as a promising therapeutic target due to structural features that are distinct from other eukaryotes. Here, we present the 2.8-Å resolution structure of the Leishmania donovani large ribosomal subunit (LSU) derived from a cryo-EM map, further enabling the structural observation of eukaryotic rRNA modifications that play a significant role in ribosome assembly and function. The structure illustrates the unique fragmented nature of leishmanial LSU rRNA and highlights the irregular distribution of rRNA modifications in Leishmania, a characteristic with implications for anti-parasitic drug development.


Asunto(s)
Leishmania donovani , Subunidades Ribosómicas Grandes/química , Microscopía por Crioelectrón , Modelos Moleculares , Conformación de Ácido Nucleico , Estructura Cuaternaria de Proteína , Proteínas Protozoarias/química , ARN Protozoario/química , ARN Ribosómico/química , Proteínas Ribosómicas/química , Subunidades Ribosómicas Grandes/ultraestructura
18.
Proc Natl Acad Sci U S A ; 112(43): E5805-14, 2015 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-26464510

RESUMEN

The emergence of bacterial multidrug resistance to antibiotics threatens to cause regression to the preantibiotic era. Here we present the crystal structure of the large ribosomal subunit from Staphylococcus aureus, a versatile Gram-positive aggressive pathogen, and its complexes with the known antibiotics linezolid and telithromycin, as well as with a new, highly potent pleuromutilin derivative, BC-3205. These crystal structures shed light on specific structural motifs of the S. aureus ribosome and the binding modes of the aforementioned antibiotics. Moreover, by analyzing the ribosome structure and comparing it with those of nonpathogenic bacterial models, we identified some unique internal and peripheral structural motifs that may be potential candidates for improving known antibiotics and for use in the design of selective antibiotic drugs against S. aureus.


Asunto(s)
Ribosomas/metabolismo , Staphylococcus aureus/metabolismo , Conformación Proteica , ARN Ribosómico/metabolismo , Proteínas Ribosómicas/química , Proteínas Ribosómicas/metabolismo
19.
Chembiochem ; 16(10): 1415-9, 2015 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-25930950

RESUMEN

We have developed a collagen-mRNA platform for controllable protein production that is intended to be less prone to the problems associated with commonly used mRNA therapy as well as with collagen skin-healing procedures. A collagen mimic was constructed according to a recombinant method and was used as scaffold for translating mRNA chains into proteins. Cysteines were genetically inserted into the collagen chain at positions allowing efficient ribosome translation activity while minimizing mRNA misfolding and degradation. Enhanced green fluorescence protein (eGFP) mRNA bound to collagen was successfully translated by cell-free Escherichia coli ribosomes. This system enabled an accurate control of specific protein synthesis by monitoring expression time and level. Luciferase-mRNA was also translated on collagen scaffold by eukaryotic cell extracts. Thus we have demonstrated the feasibility of controllable protein synthesis on collagen scaffolds by ribosomal machinery.


Asunto(s)
Sistema Libre de Células , Colágeno/genética , Biosíntesis de Proteínas , ARN Mensajero/genética , Sistema Libre de Células/metabolismo , Colágeno/química , Escherichia coli/genética , Proteínas Fluorescentes Verdes/análisis , Proteínas Fluorescentes Verdes/genética , Luciferasas/análisis , Luciferasas/genética , Sustancias Luminiscentes/análisis , Sustancias Luminiscentes/metabolismo , Proteínas de Unión a Maltosa/química , Proteínas de Unión a Maltosa/genética , Multimerización de Proteína , Estabilidad Proteica , ARN Mensajero/química , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética
20.
Philos Trans R Soc Lond B Biol Sci ; 366(1580): 2972-8, 2011 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-21930590

RESUMEN

Based on the presumed capability of a prebiotic pocket-like entity to accommodate substrates whose stereochemistry enables the creation of chemical bonds, it is suggested that a universal symmetrical region identified within all contemporary ribosomes originated from an entity that we term the 'proto-ribosome'. This 'proto-ribosome' could have evolved from an earlier machine that was capable of performing essential tasks in the RNA world, called here the 'pre-proto-ribosome', which was adapted for producing proteins.


Asunto(s)
Evolución Molecular , ARN Mensajero/química , Ribosomas/química , Aminoácidos/química , Sitios de Unión , Catálisis , Biosíntesis de Proteínas , Pliegue del ARN , Estabilidad del ARN , ARN Catalítico/química , ARN Ribosómico/química , ARN de Transferencia/química , Ribosomas/genética , Estereoisomerismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...