Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Can J Microbiol ; 38(12): 1324-8, 1992 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-1288849

RESUMEN

Limited diversity was found among cyanobionts from a cultivated population of cycads at a field site in Florida. All isolates were classified as Nostoc but were different from the one Nostoc species found in the soil. These cyanobacteria were root endophytes of several plants of Zamia integrifolia and one of Dioon. The isolates were similar morphologically and in their reactions to four fluorescein isothiocyanate conjugated lectins. Electrophoretic protein profiles and zymograms distinguished one cyanobiont and the soil Nostoc. A tenacious Anabaena epiphyte was also discovered inhabiting the surfaces of root nodules.


Asunto(s)
Cianobacterias/aislamiento & purificación , Plantas/microbiología , Proteínas Bacterianas/aislamiento & purificación , Cianobacterias/clasificación , Cianobacterias/enzimología , Microbiología del Suelo , Especificidad de la Especie
2.
Microb Ecol ; 21(1): 199-209, 1991 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24194211

RESUMEN

Genetic similarity among cyanobacteria of a morphological subgroup ofNostoc was evaluated through a comparison of several specific genes and the extent of DNA methylation. Four of six cyanobacteria were originally cultured from facultative symbioses with higher plants (Gunnera andEncephalartos); these and one free-living isolate had been identified or reputed to beN. punctiforme. No consistent correlation to species or symbiotic history was found from DNA hybridizations to genes coding for phycocyanin (cpcAB), allophycocyanin (apcAB), gas vesicle protein (gvpA1), and dinitrogenase reductase (nifH). One gene (gvpC) was not present, andgvpA1 was a single-copy gene in all strains. The gas vesicle genes were concluded to be potentially useful for broadly characterizingNostoc or at least this subgroup. Incubations ofNostoc genomic DNA with 22 restriction endonucleases indicated a high degree of methylation and similarity of its methylated DNA to that of other heterocystous cyanobacteria. The genetic variation of theNostoc isolates was judged to reflect primarily different soil origins.

3.
Microb Ecol ; 19(3): 291-302, 1990 May.
Artículo en Inglés | MEDLINE | ID: mdl-24196366

RESUMEN

Cyanobacteria separated from symbiosis with several species of the angiospermGunnera were comparatively characterized and correlated with the locales and taxonomy of their host plants. All were identified as strains ofNostoc. Protein profiles and DNA restriction fragment length polymorphisms (from hybridizations with heterologousnifH andglnA probes) determined that three of the four cyanobacteria fromGunnera grown at one site in Sweden, each from a different host species, were very similar or identical. Plants of one species,G. manicata, grown in a second location at the site were infected with a different cyanobiont. Among five isolates from two species ofGunnera, collected in the same locale in New Zealand, three subgroups were documented. Isolates from three differentGunnera species grown in separate locations in the United States were each uniquely different. None of the cyanobacteria differed in the molecular weights of their glutamine synthetase and Fe-nitrogenase proteins. The diversity and accessibility of compatibleNostoc populations present in the soil micro-environment, not a critical selective factor required byGunnera, were concluded to be a major determinant in symbiont selection.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...