Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Mol Gastroenterol Hepatol ; 17(4): 517-538, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38158122

RESUMEN

BACKGROUND & AIMS: Type 2 immune responses contribute to liver fibrosis in parasite infections, but their role in other liver diseases is less well understood. Here, we aimed at unravelling mechanisms involved in T helper 2 (Th2) T-cell polarization, activation, and recruitment in human liver fibrosis and cirrhosis. METHODS: Tissues, cells, and serum from human livers were analyzed using quantitative reverse-transcription polymerase chain reaction, enzyme-linked immunosorbent assay, fluorescence in situ hybridization, immunostaining, flow cytometry, and various functional in vitro assays. Cellular interactions and soluble mediators involved in T-cell polarization and recruitment were studied, as well as their effect on hepatic stellate cell (HSC) activation, proliferation, and extracellular matrix synthesis. RESULTS: In human liver fibrosis, a stage-dependent increase in Th2-related transcription factors, Th2 cytokines, and trans-acting T-cell-specific transcription factor-expressing T cells was observed, and was highest in cirrhotic livers. The alarmin interleukin (IL)33 was found to be increased in livers and sera from patients with cirrhosis, to act as a chemotactic agent for Th2 cells, and to induce type 2 polarization of CD4+ T cells. Oval cells, liver sinusoidal endothelial cells, intrahepatic macrophages, and migrating monocytes were identified as sources of IL33. IL33-activated T cells, but not IL33 alone, induced HSC activation, as shown by Ki67 and α-smooth muscle actin staining, increased collagen type I alpha 1 chain messenger RNA expression, and wound healing assays. The profibrotic effect of IL33-activated T cells was contact-independent and could be antagonized using monoclonal antibodies against IL13. CONCLUSION: In patients with chronic liver disease, the alarmin IL33 promotes the recruitment and activation of CD4+ T cells with Th2-like properties, which activate paracrine HSC in an IL13-dependent manner and promotes fibrogenesis.


Asunto(s)
Interleucina-13 , Hepatopatías , Humanos , Interleucina-13/metabolismo , Interleucina-33/metabolismo , Células Endoteliales/metabolismo , Células Th2/metabolismo , Alarminas/metabolismo , Hibridación Fluorescente in Situ , Células Estrelladas Hepáticas/metabolismo , Hepatopatías/metabolismo , Cirrosis Hepática/metabolismo , Fibrosis
2.
Front Immunol ; 10: 893, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31068952

RESUMEN

Control of homeostasis and rapid response to tissue damage in the liver is orchestrated by crosstalk between resident and infiltrating inflammatory cells. A crucial role for myeloid cells during hepatic injury and repair has emerged where resident Kupffer cells, circulating monocytes, macrophages, dendritic cells and neutrophils control local tissue inflammation and regenerative function to maintain tissue architecture. Studies in humans and rodents have revealed a heterogeneous population of myeloid cells that respond to the local environment by either promoting regeneration or driving the inflammatory processes that can lead to hepatitis, fibrogenesis, and the development of cirrhosis and malignancy. Such plasticity of myeloid cell responses presents unique challenges for therapeutic intervention strategies and a greater understanding of the underlying mechanisms is needed. Here we review the role of myeloid cells in the establishment and progression of liver disease and highlight key pathways that have become the focus for current and future therapeutic strategies.


Asunto(s)
Susceptibilidad a Enfermedades , Hepatopatías/etiología , Hepatopatías/metabolismo , Células Mieloides/inmunología , Células Mieloides/metabolismo , Enfermedad Aguda , Animales , Diferenciación Celular/genética , Diferenciación Celular/inmunología , Enfermedad Crónica , Progresión de la Enfermedad , Humanos , Macrófagos del Hígado/inmunología , Macrófagos del Hígado/metabolismo , Cirrosis Hepática/etiología , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Hepatopatías/patología , Hepatopatías/terapia , Neoplasias Hepáticas/etiología , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Macrófagos/inmunología , Macrófagos/metabolismo , Monocitos/inmunología , Monocitos/metabolismo , Neutrófilos/inmunología , Neutrófilos/metabolismo , Neutrófilos/patología , Fenotipo
3.
J Hepatol ; 66(4): 743-753, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28011329

RESUMEN

BACKGROUND & AIMS: During liver inflammation, triggering fibrogenesis and carcinogenesis immune cells play a pivotal role. In the present study we investigated the role of CCL5 in human and in murine models of chronic liver inflammation leading to hepatocellular carcinoma (HCC) development. METHODS: CCL5 expression and its receptors were studied in well-defined patients with chronic liver disease (CLD) and in two murine inflammation based HCC models. The role of CCL5 in inflammation, fibrosis, tumor initiation and progression was analyzed in different cell populations of NEMOΔhepa/CCL5-/- animals and after bone marrow transplantation (BMT). For therapeutic intervention Evasin-4 was injected for 24h or 8weeks. RESULTS: In CLD patients, CCL5 and its receptor CCR5 are overexpressed - an observation confirmed in the Mdr2-/- and NEMOΔhepa model. CCL5 deletion in NEMOΔhepa mice diminished hepatocyte apoptosis, compensatory proliferation and fibrogenesis due to reduced immune cell infiltration. Especially, CD45+/Ly6G+ granulocytes, CD45+/CD11b+/Gr1.1+/F4/80+ pro-inflammatory monocytes, CD4+ and CD8+ T cells were decreased. One year old NEMOΔhepa/CCL5-/- mice displayed smaller and less malignant tumors, characterized by reduced proliferative capacity and less pronounced angiogenesis. We identified hematopoietic cells as the main source of CCL5, while CCL5 deficiency did not sensitise NEMOΔhepa hepatocytes towards TNFα induced apoptosis. Finally, therapeutic intervention with Evasin-4 over a period of 8weeks ameliorated liver disease progression. CONCLUSION: We identified an important role of CCL5 in human and functionally in mice with disease progression, especially HCC development. A novel approach to inhibit CCL5 in vivo thus appears encouraging for patients with CLD. LAY SUMMARY: Our present study identifies the essential role of the chemoattractive cytokine CCL5 for liver disease progression and especially hepatocellular carcinoma development in men and mice. Finally, the inhibition of CCL5 appears to be encouraging for therapy of human chronic liver disease.


Asunto(s)
Carcinoma Hepatocelular/inmunología , Quimiocina CCL5/metabolismo , Hepatitis Crónica/inmunología , Neoplasias Hepáticas/inmunología , Animales , Carcinoma Hepatocelular/etiología , Carcinoma Hepatocelular/genética , Quimiocina CCL5/antagonistas & inhibidores , Quimiocina CCL5/deficiencia , Quimiocina CCL5/genética , Progresión de la Enfermedad , Hematopoyesis/inmunología , Hepatitis Crónica/complicaciones , Hepatitis Crónica/genética , Humanos , Cirrosis Hepática/etiología , Cirrosis Hepática/inmunología , Cirrosis Hepática/patología , Neoplasias Hepáticas/etiología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas Experimentales/etiología , Neoplasias Hepáticas Experimentales/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores CCR5/metabolismo
4.
Digestion ; 88(1): 1-16, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23774822

RESUMEN

BACKGROUND/AIMS: Experimental liver injury models have indicated that natural killer (NK) cells are critical regulators of inflammation and fibrosis. However, data on NK cells and subsets in patients with liver diseases are limited. We thus comprehensively characterized peripheral and hepatic NK cell subsets in patients with chronic liver diseases (CLDs) of different etiologies and fibrosis stages. METHODS: NK cells and other lymphocyte populations were characterized by FACS in 189 CLD patients (71 non-cirrhosis, 118 cirrhosis) and 153 healthy controls in blood and liver biopsies (n = 40). RESULTS: In contrast to other lymphocyte subsets, circulating NK cells were generally reduced in CLD patients. Patients with fibrosis displayed a distinct increase of CD16- NK cells in blood and of the CD16+ NK cell subset in liver. Patients with cirrhosis had overall lymphopenia, including reduced peripheral NK cells. Most pronounced shifts in NK cell subsets in blood and liver were found in cholestatic and autoimmune CLDs. Blood NK cells and subsets correlated with liver function, and inversely with fibrosis markers and inflammatory cytokines. CONCLUSIONS: The close association of human NK cells with disease severity and the intrahepatic accumulation of CD16+ NK cells in early fibrosis favor the concept of beneficial NK cell functions in hepatofibrogenesis.


Asunto(s)
Células Asesinas Naturales/inmunología , Cirrosis Hepática/inmunología , Subgrupos Linfocitarios/inmunología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores/sangre , Enfermedad Crónica , Citocinas/sangre , Femenino , Citometría de Flujo , Humanos , Inmunofenotipificación , Cirrosis Hepática/clasificación , Masculino , Persona de Mediana Edad , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...