Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Med Microbiol ; 73(2)2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38362900

RESUMEN

Pseudomonas aeruginosa is one of the most versatile bacteria with renowned pathogenicity and extensive drug resistance. The diverse habitats of this bacterium include fresh, saline and drainage waters, soil, moist surfaces, taps, showerheads, pipelines, medical implants, nematodes, insects, plants, animals, birds and humans. The arsenal of virulence factors produced by P. aeruginosa includes pyocyanin, rhamnolipids, siderophores, lytic enzymes, toxins and polysaccharides. All these virulent elements coupled with intrinsic, adaptive and acquired antibiotic resistance facilitate persistent colonization and lethal infections in different hosts. To date, treating pulmonary diseases remains complicated due to the chronic secondary infections triggered by hospital-acquired P. aeruginosa. On the contrary, this bacterium can improve plant growth by suppressing phytopathogens and insects. Notably, P. aeruginosa is one of the very few bacteria capable of trans-kingdom transmission and infection. Transfer of P. aeruginosa strains from plant materials to hospital wards, animals to humans, and humans to their pets occurs relatively often. Recently, we have identified that plant-associated P. aeruginosa strains could be pathologically similar to clinical isolates. In this review, we have highlighted the genomic and metabolic factors that facilitate the dominance of P. aeruginosa across different biological kingdoms and the varying roles of this bacterium in plant and human health.


Asunto(s)
Infecciones por Pseudomonas , Pseudomonas aeruginosa , Animales , Humanos , Factores de Virulencia/genética , Virulencia/genética , Genómica , Infecciones por Pseudomonas/microbiología
2.
Pathogens ; 12(8)2023 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-37624025

RESUMEN

(1) Background: Bacillus cereus biovar anthracis (Bcbva) was the causative agent of an anthrax-like fatal disease among wild chimpanzees in 2001 in Côte d'Ivoire. Before this, there had not been any description of an anthrax-like disease caused by typically avirulent Bacillus cereus. Genetic analysis found that B. cereus had acquired two anthrax-like plasmids, one a pXO1-like toxin producing plasmid and the other a pXO2-like plasmid encoding capsule. Bcbva caused animal fatalities in Cameroon, Democratic Republic of Congo, and the Central African Republic between 2004 and 2012. (2) Methods: The pathogen had acquired plasmids in the wild and that was discovered as the cause of widespread animal fatalities in the early 2000s. Primate bones had been shipped out of the endemic zone for anthropological studies prior to the realized danger of contamination with Bcbva. Spores were isolated from the bone fragments and positively identified as Bcbva. Strains were characterized by classical microbiological methods and qPCR. Four new Bcbva isolates were whole-genome sequenced. Chromosomal and plasmid phylogenomic analysis was performed to provide temporal and spatial context to these new strains and previously sequenced Bcbva. Tau and principal component analyses were utilized to identify genetic and spatial case patterns in the Taï National Park anthrax zone. (3) Results: Preliminary studies positively identified Bcbva presence in several archival bone fragments. The animals in question died between 1994 and 2010. Previously, the earliest archival strains of Bcbva were identified in 1996. Though the pathogen has a homogeneous genome, spatial analyses of a subset of mappable isolates from Taï National Park revealed strains found closer together were generally more similar, with strains from chimpanzees and duikers having the widest distribution. Ancestral strains were located mostly in the west of the park and had lower spatial clustering compared to more recent isolates, indicating a local increase in genetic diversity of Bcbva in the park over space and time. Global clustering analysis indicates patterns of genetic diversity and distance are shared between the ancestral and more recently isolated type strains. (4) Conclusions: Our strains have the potential to unveil historical genomic information not available elsewhere. This information sheds light on the evolution and emergence of a dangerous anthrax-causing pathogen.

3.
Microorganisms ; 10(8)2022 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-36014002

RESUMEN

Brucellosis is one of the most important and widespread bacterial zoonoses worldwide. Cases are reported annually across the range of known infectious species of the genus Brucella. Globally, Brucella melitensis, primarily hosted by domestic sheep and goats, affects large proportions of livestock herds, and frequently spills over into humans. While some species, such as Brucella abortus, are well controlled in livestock in areas of North America, the Greater Yellowstone Ecosystem supports the species in native wild ungulates with occasional spillover to livestock. Elsewhere in North America, other Brucella species still infect domestic dogs and feral swine, with some associated human cases. Brucella spp. patterns vary across space globally with B. abortus and B. melitensis the most important for livestock control. A myriad of other species within the genus infect a wide range of marine mammals, wildlife, rodents, and even frogs. Infection in humans from these others varies with geography and bacterial species. Control in humans is primarily achieved through livestock vaccination and culling and requires accurate and rapid species confirmation; vaccination is Brucella spp.-specific and typically targets single livestock species for distribution. Traditional bacteriology methods are slow (some media can take up to 21 days for bacterial growth) and often lack the specificity of molecular techniques. Here, we summarize the molecular techniques for confirming and identifying specific Brucella species and provide recommendations for selecting the appropriate methods based on need, sensitivity, and laboratory capabilities/technology. As vaccination/culling approaches are costly and logistically challenging, proper diagnostics and species identification are critical tools for targeting surveillance and control.

5.
PLoS Biol ; 18(12): e3001052, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33370274

RESUMEN

Bacillus anthracis, a spore-forming gram-positive bacterium, causes anthrax. The external surface of the exosporium is coated with glycosylated proteins. The sugar additions are capped with the unique monosaccharide anthrose. The West African Group (WAG) B. anthracis have mutations rendering them anthrose deficient. Through genome sequencing, we identified 2 different large chromosomal deletions within the anthrose biosynthetic operon of B. anthracis strains from Chile and Poland. In silico analysis identified an anthrose-deficient strain in the anthrax outbreak among European heroin users. Anthrose-deficient strains are no longer restricted to West Africa so the role of anthrose in physiology and pathogenesis was investigated in B. anthracis Sterne. Loss of anthrose delayed spore germination and enhanced sporulation. Spores without anthrose were phagocytized at higher rates than spores with anthrose, indicating that anthrose may serve an antiphagocytic function on the spore surface. The anthrose mutant had half the LD50 and decreased time to death (TTD) of wild type and complement B. anthracis Sterne in the A/J mouse model. Following infection, anthrose mutant bacteria were more abundant in the spleen, indicating enhanced dissemination of Sterne anthrose mutant. At low sample sizes in the A/J mouse model, the mortality of ΔantC-infected mice challenged by intranasal or subcutaneous routes was 20% greater than wild type. Competitive index (CI) studies indicated that spores without anthrose disseminated to organs more extensively than a complemented mutant. Death process modeling using mouse mortality dynamics suggested that larger sample sizes would lead to significantly higher deaths in anthrose-negative infected animals. The model was tested by infecting Galleria mellonella with spores and confirmed the anthrose mutant was significantly more lethal. Vaccination studies in the A/J mouse model showed that the human vaccine protected against high-dose challenges of the nonencapsulated Sterne-based anthrose mutant. This work begins to identify the physiologic and pathogenic consequences of convergent anthrose mutations in B. anthracis.


Asunto(s)
Amino Azúcares/genética , Bacillus anthracis/genética , Bacillus anthracis/metabolismo , Desoxiglucosa/análogos & derivados , Amino Azúcares/inmunología , Amino Azúcares/metabolismo , Animales , Carbunco/genética , Carbunco/inmunología , Carbunco/metabolismo , Bacillus anthracis/patogenicidad , Evolución Biológica , Desoxiglucosa/genética , Desoxiglucosa/inmunología , Desoxiglucosa/metabolismo , Modelos Animales de Enfermedad , Brotes de Enfermedades , Evolución Molecular , Femenino , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Endogámicos A , Mariposas Nocturnas/microbiología , Oligosacáridos/genética , Oligosacáridos/inmunología , Oligosacáridos/metabolismo , Esporas Bacterianas/genética , Esporas Bacterianas/inmunología , Esporas Bacterianas/metabolismo
6.
Pathogens ; 9(12)2020 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-33371332

RESUMEN

Anthrax is a worldwide zoonotic disease caused by the spore-forming bacterium Bacillus anthracis. Primarily a disease of herbivores, human infections often result from direct contact with contaminated animal products (cutaneous and inhalational anthrax) or through consumption of infected meat (gastrointestinal anthrax). The genetic near neighbor, Bacillus cereus biovar anthracis (Bcbva), causes an anthrax-like illness in the wildlife and livestock of west and central Africa due to the presence and expression of B. anthracis-specific virulence factors in this background. While Bcbva infections have not been reported in humans, a recent seroprevalence study detected Bcbva antibodies in the rural population around Taï National Park. This work describes the development of new TaqMan multiplex PCRs for the simultaneous detection of B. anthracis and Bcbva. The assays are designed to amplify Ba-1, capB, and lef markers in B. anthracis and genomic island IV (GI4), capB, and lef in Bcbva. Our assays allow for the rapid discrimination of B. anthracis and Bcbva and will provide insights into the molecular epidemiology of these two important pathogens that share an overlapping geographical range in west and central Africa.

7.
Artículo en Inglés | MEDLINE | ID: mdl-32708490

RESUMEN

(1) Background: Burkholderia pseudomallei is an environmentally mediated saprophytic pathogen that can cause severe disease in humans. It is well known that B. pseudomallei survives in tropical moist soil environments worldwide, but melioidosis is gaining recognition as a public and veterinary health issue in Vietnam. The contribution of animals to human disease is unknown, necessitating further investigation. (2) Methods: Swine sera were collected from two populations, one grazing and one commercially farmed, from three provinces in Vietnam. ELISAs utilizing B. pseudomallei capsular polysaccharide (CPS), outer polysaccharide (OPS), and Hcp1 protein were used to screen serum samples. Positive samples were mapped to the commune level. Seroprevalence calculations and pig population estimates were used to approximate number of swine exposures per commune. (3) Results: Grazing pigs from Hoa Binh had significantly higher seropositivity levels (11.4%, 95% CI: 9.7-13.1) compared to farmed pigs from Ha Tinh and Nghe An (4%, 95% CI: 3.3-4.7). Average swine seropositivity rates were ~6.3% (95% CI: 5-7.9), higher than previously identified in Vietnam (~0.88%). (4) Conclusions: Initial serological sampling identified a significant number of seropositive and potential melioidosis infections occurring in swine in Vietnam. This work is a critical step in understanding the role swine may play in the epidemiology of human melioidosis in Vietnam.


Asunto(s)
Burkholderia pseudomallei/aislamiento & purificación , Melioidosis/diagnóstico , Melioidosis/veterinaria , Pruebas Serológicas/métodos , Animales , Anticuerpos Antibacterianos/sangre , Burkholderia pseudomallei/genética , Ensayo de Inmunoadsorción Enzimática , Humanos , Melioidosis/epidemiología , Estudios Seroepidemiológicos , Porcinos , Vietnam/epidemiología
8.
PLoS One ; 15(1): e0228270, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31978128

RESUMEN

Bacillus anthracis is the causative agent of anthrax in animals and humans. The organism lies in a dormant state in the soil until introduced into an animal via, ingestion, cutaneous inoculation or inhalation. Once in the host, spores germinate into rapidly growing vegetative cells elaborating toxins. When animals die of anthrax, vegetative bacteria sporulate upon nutrient limitation in the carcass or soil while in the presence of air. After release into the soil environment, spores form a localized infectious zone (LIZ) at and around the carcass. Laboratory strains of B. anthracis produce fewer proteins associated with growth and sporulation compared to wild strains isolated from recent zoonotic disease events. We verified wild strains grow more rapidly than lab strains demonstrating a greater responsiveness to nutrient availability. Sporulation was significantly more rapid in these wild strains compared to lab strains, indicating wild strains are able to sporulate faster due to nutrient limitation while laboratory strains have a decrease in the speed at which they utilize nutrients and an increase in time to sporulation. These findings have implications for disease control at the LIZ as well as on the infectious cycle of this dangerous zoonotic pathogen.


Asunto(s)
Bacillus anthracis/fisiología , Esporas Bacterianas/crecimiento & desarrollo , Proteínas Bacterianas/genética , Laboratorios , Microbiología del Suelo , Especificidad de la Especie
9.
BMC Microbiol ; 20(1): 6, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31910798

RESUMEN

BACKGROUND: The exosporium of the anthrax-causing Bacillus anthracis endospores display a tetrasaccharide composed of three rhamnose residues and an unusual sugar termed anthrose. Anthrose is a proposed potential target for immunotherapy and for specific detection of B. anthracis. Although originally thought to be ubiquitous in B. anthracis, previous work identified an anthrose negative strain from a West African lineage isolated from cattle that could represent a vaccine escape mutant. These strains carry genes required for expression of the anthrose operon but premature stop codons resulting from an 8-bp insertion in BAS3320 (an amino-transferase) and a C/T substitution at position 892 of the BAS3321 (a glycosyltransferase) gene prevent anthrose expression. Various other single nucleotide polymorphisms (SNPs) have been identified throughout the operon and could be the basis for detection of anthrose-deficient strains. RESULTS: In this study, we evaluated rhAmp genotypic assays based on SNPs at positions 892 and 1352 of BAS3321 for detection and differentiation of anthrose negative (Ant-) West African strains. Discrimination of anthrose negative West African isolates was achieved with as low as 100 fg of DNA, whereas consistent genotyping of Sterne necessitated at least 1 pg of DNA. CONCLUSIONS: Screening of a global panel of B. anthracis isolates showed anthrose-expressing alleles are prevalent worldwide whereas the anthrose-deficient phenotype is to date limited to West Africa. Our work also revealed a third, previously unreported anthrose genotype in which the operon is altogether missing from a Polish B. anthracis isolate.


Asunto(s)
Bacillus anthracis/genética , Técnicas de Genotipaje/métodos , Glicosiltransferasas/genética , Polimorfismo de Nucleótido Simple , Amino Azúcares/genética , Amino Azúcares/metabolismo , Animales , Bacillus anthracis/metabolismo , Proteínas Bacterianas/genética , Bovinos , Desoxiglucosa/análogos & derivados , Desoxiglucosa/genética , Desoxiglucosa/metabolismo , Evolución Molecular , Mutagénesis Insercional , Operón
10.
Antimicrob Agents Chemother ; 60(2): 936-45, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26621621

RESUMEN

Pseudomonas aeruginosa is an opportunistic pathogen often associated with severe and life-threatening infections that are highly impervious to treatment. This microbe readily exhibits intrinsic and acquired resistance to varied antimicrobial drugs. Resistance to penicillin-like compounds is commonplace and provided by the chromosomal AmpC ß-lactamase. A second, chromosomally encoded ß-lactamase, PoxB, has previously been reported in P. aeruginosa. In the present work, the contribution of this class D enzyme was investigated using a series of clean in-frame ampC, poxB, and oprD deletions, as well as complementation by expression under the control of an inducible promoter. While poxB deletions failed to alter ß-lactam sensitivities, expression of poxB in ampC-deficient backgrounds decreased susceptibility to both meropenem and doripenem but had no effect on imipenem, penicillin, and cephalosporin MICs. However, when expressed in an ampCpoxB-deficient background, that additionally lacked the outer membrane porin-encoding gene oprD, PoxB significantly increased the imipenem as well as the meropenem and doripenem MICs. Like other class D carbapenem-hydrolyzing ß-lactamases, PoxB was only poorly inhibited by class A enzyme inhibitors, but a novel non-ß-lactam compound, avibactam, was a slightly better inhibitor of PoxB activity. In vitro susceptibility testing with a clinical concentration of avibactam, however, failed to reduce PoxB activity against the carbapenems. In addition, poxB was found to be cotranscribed with an upstream open reading frame, poxA, which itself was shown to encode a 32-kDa protein of yet unknown function.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Carbapenémicos/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Resistencia betalactámica/genética , beta-Lactamasas/metabolismo , Compuestos de Azabiciclo/farmacología , Eliminación de Gen , Regulación Bacteriana de la Expresión Génica , Imipenem/farmacología , Meropenem , Pruebas de Sensibilidad Microbiana , Operón , Porinas/genética , Porinas/metabolismo , Pseudomonas aeruginosa/enzimología , Pseudomonas aeruginosa/genética , Tienamicinas/farmacología , Resistencia betalactámica/efectos de los fármacos , beta-Lactamasas/genética
11.
J Bacteriol ; 196(22): 3890-902, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25182487

RESUMEN

Pseudomonas aeruginosa is a dreaded pathogen in many clinical settings. Its inherent and acquired antibiotic resistance thwarts therapy. In particular, derepression of the AmpC ß-lactamase is a common mechanism of ß-lactam resistance among clinical isolates. The inducible expression of ampC is controlled by the global LysR-type transcriptional regulator (LTTR) AmpR. In the present study, we investigated the genetic and structural elements that are important for ampC induction. Specifically, the ampC (PampC) and ampR (PampR) promoters and the AmpR protein were characterized. The transcription start sites (TSSs) of the divergent transcripts were mapped using 5' rapid amplification of cDNA ends-PCR (RACE-PCR), and strong σ(54) and σ(70) consensus sequences were identified at PampR and PampC, respectively. Sigma factor RpoN was found to negatively regulate ampR expression, possibly through promoter blocking. Deletion mapping revealed that the minimal PampC extends 98 bp upstream of the TSS. Gel shifts using membrane fractions showed that AmpR binds to PampC in vitro whereas in vivo binding was demonstrated using chromatin immunoprecipitation-quantitative PCR (ChIP-qPCR). Additionally, site-directed mutagenesis of the AmpR helix-turn-helix (HTH) motif identified residues critical for binding and function (Ser38 and Lys42) and critical for function but not binding (His39). Amino acids Gly102 and Asp135, previously implicated in the repression state of AmpR in the enterobacteria, were also shown to play a structural role in P. aeruginosa AmpR. Alkaline phosphatase fusion and shaving experiments suggest that AmpR is likely to be membrane associated. Lastly, an in vivo cross-linking study shows that AmpR dimerizes. In conclusion, a potential membrane-associated AmpR dimer regulates ampC expression by direct binding.


Asunto(s)
Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Pseudomonas aeruginosa/metabolismo , Secuencias de Aminoácidos , Antibacterianos/farmacología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Mapeo Cromosómico , Cromosomas Bacterianos , Secuencia de Consenso , Farmacorresistencia Bacteriana , Regiones Promotoras Genéticas , Unión Proteica , Conformación Proteica , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/genética , Resistencia betalactámica , beta-Lactamasas/genética , beta-Lactamasas/metabolismo , beta-Lactamas/farmacología
12.
J Med Microbiol ; 63(Pt 4): 544-555, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24464693

RESUMEN

Pseudomonas aeruginosa is one of the most dreaded opportunistic pathogens accounting for 10 % of hospital-acquired infections, with a 50 % mortality rate in chronically ill patients. The increased prevalence of drug-resistant isolates is a major cause of concern. Resistance in P. aeruginosa is mediated by various mechanisms, some of which are shared among different classes of antibiotics and which raise the possibility of cross-resistance. The goal of this study was to explore the effect of subinhibitory concentrations (SICs) of clinically relevant antibiotics and the role of a global antibiotic resistance and virulence regulator, AmpR, in developing cross-resistance. We investigated the induction of transient cross-resistance in P. aeruginosa PAO1 upon exposure to SICs of antibiotics. Pre-exposure to carbapenems, specifically imipenem, even at 3 ng ml(-1), adversely affected the efficacy of clinically used penicillins and cephalosporins. The high ß-lactam resistance was due to elevated expression of both ampC and ampR, encoding a chromosomal ß-lactamase and its regulator, respectively. Differences in the susceptibility of ampR and ampC mutants suggested non-AmpC-mediated regulation of ß-lactam resistance by AmpR. The increased susceptibility of P. aeruginosa in the absence of ampR to various antibiotics upon SIC exposure suggests that AmpR plays a major role in the cross-resistance. AmpR was shown previously to be involved in resistance to quinolones by regulating MexEF-OprN efflux pump. The data here further indicate the role of AmpR in cross-resistance between quinolones and aminoglycosides. This was confirmed using quantitative PCR, where expression of the mexEF efflux pump was further induced by ciprofloxacin and tobramycin, its substrate and a non-substrate, respectively, in the absence of ampR. The data presented here highlight the intricate cross-regulation of antibiotic resistance pathways at SICs of antibiotics and the need for careful assessment of the order of antibiotic regimens as this may have dire consequences. Targeting a global regulator such as AmpR that connects diverse pathways is a feasible therapeutic approach to combat P. aeruginosa pathogenesis.


Asunto(s)
Antibacterianos/metabolismo , Proteínas Bacterianas/metabolismo , Pseudomonas aeruginosa/efectos de los fármacos , Activación Transcripcional , Resistencia betalactámica , beta-Lactamas/metabolismo , Aminoglicósidos/metabolismo , Quinolonas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...