Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Nat Genet ; 55(8): 1359-1369, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37400615

RESUMEN

Metazoan promoters are enriched in secondary DNA structure-forming motifs, such as G-quadruplexes (G4s). Here we describe 'G4access', an approach to isolate and sequence G4s associated with open chromatin via nuclease digestion. G4access is antibody- and crosslinking-independent and enriches for computationally predicted G4s (pG4s), most of which are confirmed in vitro. Using G4access in human and mouse cells, we identify cell-type-specific G4 enrichment correlated with nucleosome exclusion and promoter transcription. G4access allows measurement of variations in G4 repertoire usage following G4 ligand treatment, HDAC and G4 helicases inhibitors. Applying G4access to cells from reciprocal hybrid mouse crosses suggests a role for G4s in the control of active imprinting regions. Consistently, we also observed that G4access peaks are unmethylated, while methylation at pG4s correlates with nucleosome repositioning on DNA. Overall, our study provides a new tool for studying G4s in cellular dynamics and highlights their association with open chromatin, transcription and their antagonism to DNA methylation.


Asunto(s)
Cromatina , G-Cuádruplex , Animales , Humanos , Ratones , Cromatina/genética , Nucleosomas/genética , ADN/genética , Regiones Promotoras Genéticas
2.
Elife ; 122023 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-36656749

RESUMEN

Quantitative differences in signal transduction are to date an understudied feature of tumour heterogeneity. The MAPK Erk pathway, which is activated in a large proportion of human tumours, is a prototypic example of distinct cell fates being driven by signal intensity. We have used primary hepatocyte precursors transformed with different dosages of an oncogenic form of Ras to model subclonal variations in MAPK signalling. Orthotopic allografts of Ras-transformed cells in immunocompromised mice gave rise to fast-growing aggressive tumours, both at the primary location and in the peritoneal cavity. Fluorescent labelling of cells expressing different oncogene levels, and consequently varying levels of MAPK Erk activation, highlighted the selection processes operating at the two sites of tumour growth. Indeed, significantly higher Ras expression was observed in primary as compared to secondary, metastatic sites, despite the apparent evolutionary trade-off of increased apoptotic death in the liver that correlated with high Ras dosage. Analysis of the immune tumour microenvironment at the two locations suggests that fast peritoneal tumour growth in the immunocompromised setting is abrogated in immunocompetent animals due to efficient antigen presentation by peritoneal dendritic cells. Furthermore, our data indicate that, in contrast to the metastatic-like outgrowth, strong MAPK signalling is required in the primary liver tumours to resist elimination by NK (natural killer) cells. Overall, this study describes a quantitative aspect of tumour heterogeneity and points to a potential vulnerability of a subtype of hepatocellular carcinoma as a function of MAPK Erk signalling intensity.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Humanos , Ratones , Carcinoma Hepatocelular/genética , Células Asesinas Naturales , Neoplasias Hepáticas/genética , Sistema de Señalización de MAP Quinasas , Transducción de Señal , Microambiente Tumoral , Proteínas ras/metabolismo
3.
Nat Commun ; 13(1): 1176, 2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-35246556

RESUMEN

To maintain cellular identities during development, gene expression profiles must be faithfully propagated through cell generations. The reestablishment of gene expression patterns upon mitotic exit is mediated, in part, by transcription factors (TF) mitotic bookmarking. However, the mechanisms and functions of TF mitotic bookmarking during early embryogenesis remain poorly understood. In this study, taking advantage of the naturally synchronized mitoses of Drosophila early embryos, we provide evidence that GAGA pioneer factor (GAF) acts as a stable mitotic bookmarker during zygotic genome activation. We show that, during mitosis, GAF remains associated to a large fraction of its interphase targets, including at cis-regulatory sequences of key developmental genes with both active and repressive chromatin signatures. GAF mitotic targets are globally accessible during mitosis and are bookmarked via histone acetylation (H4K8ac). By monitoring the kinetics of transcriptional activation in living embryos, we report that GAF binding establishes competence for rapid activation upon mitotic exit.


Asunto(s)
Cromatina , Histonas , Acetilación , Animales , Cromatina/genética , Drosophila/genética , Histonas/genética , Histonas/metabolismo , Mitosis/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
4.
Nucleic Acids Res ; 49(5): 2488-2508, 2021 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-33533919

RESUMEN

The ubiquitous family of dimeric transcription factors AP-1 is made up of Fos and Jun family proteins. It has long been thought to operate principally at gene promoters and how it controls transcription is still ill-understood. The Fos family protein Fra-1 is overexpressed in triple negative breast cancers (TNBCs) where it contributes to tumor aggressiveness. To address its transcriptional actions in TNBCs, we combined transcriptomics, ChIP-seqs, machine learning and NG Capture-C. Additionally, we studied its Fos family kin Fra-2 also expressed in TNBCs, albeit much less. Consistently with their pleiotropic effects, Fra-1 and Fra-2 up- and downregulate individually, together or redundantly many genes associated with a wide range of biological processes. Target gene regulation is principally due to binding of Fra-1 and Fra-2 at regulatory elements located distantly from cognate promoters where Fra-1 modulates the recruitment of the transcriptional co-regulator p300/CBP and where differences in AP-1 variant motif recognition can underlie preferential Fra-1- or Fra-2 bindings. Our work also shows no major role for Fra-1 in chromatin architecture control at target gene loci, but suggests collaboration between Fra-1-bound and -unbound enhancers within chromatin hubs sometimes including promoters for other Fra-1-regulated genes. Our work impacts our view of AP-1.


Asunto(s)
Elementos de Facilitación Genéticos , Regulación Neoplásica de la Expresión Génica , Proteínas Proto-Oncogénicas c-fos/metabolismo , Neoplasias de la Mama Triple Negativas/genética , Sitios de Unión , Línea Celular Tumoral , Cromatina/química , Cromatina/metabolismo , Epigénesis Genética , Antígeno 2 Relacionado con Fos/metabolismo , Humanos , Motivos de Nucleótidos , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas c-fos/fisiología , Factor de Transcripción AP-1/metabolismo , Neoplasias de la Mama Triple Negativas/metabolismo , Factores de Transcripción p300-CBP/metabolismo
5.
Pathogens ; 11(1)2021 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-35055994

RESUMEN

Chronic hepatitis C carries a high risk of development of hepatocellular carcinoma (HCC), triggered by both direct and indirect effects of the virus. We examined cell-autonomous alterations in gene expression profiles associated with hepatitis C viral presence. Highly sensitive single molecule fluorescent in situ hybridization applied to frozen tissue sections of a hepatitis C patient allowed the delineation of clusters of infected hepatocytes. Laser microdissection followed by RNAseq analysis of hepatitis C virus (HCV)-positive and -negative regions from the tumoral and non-tumoral tissues from the same patient revealed HCV-related deregulation of expression of genes in the tumor and in the non-tumoral tissue. However, there was little overlap between both gene sets. Our interest in alterations that increase the probability of tumorigenesis prompted the examination of genes whose expression was increased by the virus in the non-transformed cells and whose level remained high in the tumor. This strategy led to the identification of a novel HCV target gene: GOLT1B, which encodes a protein involved in ER-Golgi trafficking. We further show that GOLT1B expression is induced during the unfolded protein response, that its presence is essential for efficient viral replication, and that its expression is correlated with poor outcome in HCC.

6.
Proc Natl Acad Sci U S A ; 116(51): 25839-25849, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31776254

RESUMEN

Naive CD4+ T lymphocytes differentiate into different effector types, including helper and regulatory cells (Th and Treg, respectively). Heritable gene expression programs that define these effector types are established during differentiation, but little is known about the epigenetic mechanisms that install and maintain these programs. Here, we use mice defective for different components of heterochromatin-dependent gene silencing to investigate the epigenetic control of CD4+ T cell plasticity. We show that, upon T cell receptor (TCR) engagement, naive and regulatory T cells defective for TRIM28 (an epigenetic adaptor for histone binding modules) or for heterochromatin protein 1 ß and γ isoforms (HP1ß/γ, 2 histone-binding factors involved in gene silencing) fail to effectively signal through the PI3K-AKT-mTOR axis and switch to glycolysis. While differentiation of naive TRIM28-/- T cells into cytokine-producing effector T cells is impaired, resulting in reduced induction of autoimmune colitis, TRIM28-/- regulatory T cells also fail to expand in vivo and to suppress autoimmunity effectively. Using a combination of transcriptome and chromatin immunoprecipitation-sequencing (ChIP-seq) analyses for H3K9me3, H3K9Ac, and RNA polymerase II, we show that reduced effector differentiation correlates with impaired transcriptional silencing at distal regulatory regions of a defined set of Treg-associated genes, including, for example, NRP1 or Snai3. We conclude that TRIM28 and HP1ß/γ control metabolic reprograming through epigenetic silencing of a defined set of Treg-characteristic genes, thus allowing effective T cell expansion and differentiation into helper and regulatory phenotypes.


Asunto(s)
Diferenciación Celular/fisiología , Reprogramación Celular/fisiología , Proteínas Cromosómicas no Histona/metabolismo , Epigénesis Genética/fisiología , Linfocitos T/metabolismo , Proteína 28 que Contiene Motivos Tripartito/metabolismo , Animales , Autoinmunidad/fisiología , Linfocitos T CD4-Positivos/metabolismo , Diferenciación Celular/genética , Plasticidad de la Célula/fisiología , Reprogramación Celular/genética , Homólogo de la Proteína Chromobox 5 , Colon/patología , Citocinas/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica , Silenciador del Gen , Histonas/metabolismo , Ratones , Ratones Noqueados , Fosfatidilinositol 3-Quinasas/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Transcriptoma , Proteína 28 que Contiene Motivos Tripartito/genética
7.
Mol Cell ; 74(3): 555-570.e7, 2019 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-30956044

RESUMEN

L1 retrotransposons are transposable elements and major contributors of genetic variation in humans. Where L1 integrates into the genome can directly impact human evolution and disease. Here, we experimentally induced L1 retrotransposition in cells and mapped integration sites at nucleotide resolution. At local scales, L1 integration is mostly restricted by genome sequence biases and the specificity of the L1 machinery. At regional scales, L1 shows a broad capacity for integration into all chromatin states, in contrast to other known mobile genetic elements. However, integration is influenced by the replication timing of target regions, suggesting a link to host DNA replication. The distribution of new L1 integrations differs from those of preexisting L1 copies, which are significantly reshaped by natural selection. Our findings reveal that the L1 machinery has evolved to efficiently target all genomic regions and underline a predominant role for post-integrative processes on the distribution of endogenous L1 elements.


Asunto(s)
Elementos Transponibles de ADN/genética , Genoma Humano/genética , Elementos de Nucleótido Esparcido Largo/genética , Retroelementos/genética , Mapeo Cromosómico , Replicación del ADN/genética , Genómica , Células HeLa , Humanos
8.
Gigascience ; 5: 9, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26870323

RESUMEN

BACKGROUND: With next-generation sequencing (NGS) technologies, the life sciences face a deluge of raw data. Classical analysis processes for such data often begin with an assembly step, needing large amounts of computing resources, and potentially removing or modifying parts of the biological information contained in the data. Our approach proposes to focus directly on biological questions, by considering raw unassembled NGS data, through a suite of six command-line tools. FINDINGS: Dedicated to 'whole-genome assembly-free' treatments, the Colib'read tools suite uses optimized algorithms for various analyses of NGS datasets, such as variant calling or read set comparisons. Based on the use of a de Bruijn graph and bloom filter, such analyses can be performed in a few hours, using small amounts of memory. Applications using real data demonstrate the good accuracy of these tools compared to classical approaches. To facilitate data analysis and tools dissemination, we developed Galaxy tools and tool shed repositories. CONCLUSIONS: With the Colib'read Galaxy tools suite, we enable a broad range of life scientists to analyze raw NGS data. More importantly, our approach allows the maximum biological information to be retained in the data, and uses a very low memory footprint.


Asunto(s)
Biología Computacional/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Almacenamiento y Recuperación de la Información/métodos , Programas Informáticos , Secuencia de Bases , Análisis por Conglomerados , Genoma/genética , Genómica/métodos , Datos de Secuencia Molecular , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...