Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
2.
J Appl Physiol (1985) ; 103(5): 1888-93, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17641217

RESUMEN

The cardiovascular system operates under a wide scale of demands, ranging from conditions of rest to extreme stress. How the heart muscle matches rates of ATP production with utilization is an area of active investigation. ATP-sensitive potassium (K(ATP)) channels serve a critical role in the orchestration of myocardial energetic well-being. K(ATP) channel heteromultimers consist of inwardly-rectifying K(+) channel 6.2 and ATP-binding cassette sulfonylurea receptor 2A that translates local ATP/ADP levels, set by ATPases and phosphotransfer reactions, to the channel pore function. In cells in which the mobility of metabolites between intracellular microdomains is limited, coupling of phosphotransfer pathways with K(ATP) channels permits a high-fidelity transduction of nucleotide fluxes into changes in membrane excitability, matching energy demands with metabolic resources. This K(ATP) channel-dependent optimization of cardiac action potential duration preserves cellular energy balance at varying workloads. Mutations of K(ATP) channels result in disruption of the nucleotide signaling network and generate a stress-vulnerable phenotype with excessive susceptibility to injury, development of cardiomyopathy, and arrhythmia. Solving the mechanisms underlying the integration of K(ATP) channels into the cellular energy network will advance the understanding of endogenous cardioprotection and the development of strategies for the management of cardiovascular injury and disease progression.


Asunto(s)
Adenosina Trifosfato/metabolismo , Enfermedades Cardiovasculares/prevención & control , Activación del Canal Iónico , Canales KATP/metabolismo , Miocardio/metabolismo , Transportadoras de Casetes de Unión a ATP/metabolismo , Potenciales de Acción , Adenosina Difosfato/metabolismo , Animales , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/fisiopatología , Difusión , Metabolismo Energético , Homeostasis , Humanos , Modelos Cardiovasculares , Canales de Potasio/metabolismo , Canales de Potasio de Rectificación Interna/metabolismo , Receptores de Droga/metabolismo , Transducción de Señal , Receptores de Sulfonilureas
3.
Clin Pharmacol Ther ; 81(1): 99-103, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17186006

RESUMEN

A third of inherited diseases result from premature termination codon mutations. Aminoglycosides have emerged as vanguard pharmacogenetic agents in treating human genetic disorders due to their unique ability to suppress gene translation termination induced by nonsense mutations. In preclinical and pilot clinical studies, this therapeutic approach shows promise in phenotype correction by promoting otherwise defective protein synthesis. The challenge ahead is to maximize efficacy while preventing interaction with normal protein production and function.


Asunto(s)
Aminoglicósidos/farmacología , Codón sin Sentido , Enfermedades Genéticas Congénitas/tratamiento farmacológico , Farmacogenética/métodos , Modificación Traduccional de las Proteínas/efectos de los fármacos , Aminoglicósidos/uso terapéutico , Animales , Enfermedades Genéticas Congénitas/genética , Humanos
5.
Proc Natl Acad Sci U S A ; 100(5): 2695-9, 2003 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-12594332

RESUMEN

One half million patients suffer from colorectal cancer in industrialized nations, yet this disease exhibits a low incidence in under-developed countries. This geographic imbalance suggests an environmental contribution to the resistance of endemic populations to intestinal neoplasia. A common epidemiological characteristic of these colon cancer-spared regions is the prevalence of enterotoxigenic bacteria associated with diarrheal disease. Here, a bacterial heat-stable enterotoxin was demonstrated to suppress colon cancer cell proliferation by a guanylyl cyclase C-mediated signaling cascade. The heat-stable enterotoxin suppressed proliferation by increasing intracellular cGMP, an effect mimicked by the cell-permeant analog 8-br-cGMP. The antiproliferative effects of the enterotoxin and 8-br-cGMP were reversed by L-cis-diltiazem, a cyclic nucleotide-gated channel inhibitor, as well as by removal of extracellular Ca(2+), or chelation of intracellular Ca(2+). In fact, both the enterotoxin and 8-br-cGMP induced an L-cis-diltiazem-sensitive conductance, promoting Ca(2+) influx and inhibition of DNA synthesis in colon cancer cells. Induction of this previously unrecognized antiproliferative signaling pathway by bacterial enterotoxin could contribute to the resistance of endemic populations to intestinal neoplasia, and offers a paradigm for targeted prevention and therapy of primary and metastatic colorectal cancer.


Asunto(s)
Toxinas Bacterianas/farmacología , Neoplasias del Colon/patología , Neoplasias del Colon/prevención & control , Neoplasias del Colon/terapia , Enterotoxinas/farmacología , Guanilato Ciclasa , Receptores de Superficie Celular/metabolismo , Receptores de Péptidos , Calcio/metabolismo , Diferenciación Celular , División Celular/efectos de los fármacos , Neoplasias del Colon/metabolismo , ADN/metabolismo , Relación Dosis-Respuesta a Droga , Proteínas de Escherichia coli , Hormonas Gastrointestinales/metabolismo , Humanos , Inmunidad Innata , Ligandos , Potenciales de la Membrana/efectos de los fármacos , Péptidos Natriuréticos , Técnicas de Placa-Clamp , Péptidos/metabolismo , Receptores de Enterotoxina , Receptores Acoplados a la Guanilato-Ciclasa , Transducción de Señal , Células Tumorales Cultivadas
6.
Neuron ; 31(2): 233-45, 2001 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-11502255

RESUMEN

ATP-sensitive potassium (K(ATP)) channels are bifunctional multimers assembled by an ion conductor and a sulfonylurea receptor (SUR) ATPase. Sensitive to ATP/ADP, K(ATP) channels are vital metabolic sensors. However, channel regulation by competitive ATP/ADP binding would require oscillations in intracellular nucleotides incompatible with cell survival. We found that channel behavior is determined by the ATPase-driven engagement of SUR into discrete conformations. Capture of the SUR catalytic cycle in prehydrolytic states facilitated pore closure, while recruitment of posthydrolytic intermediates translated in pore opening. In the cell, channel openers stabilized posthydrolytic states promoting K(ATP) channel activation. Nucleotide exchange between intrinsic ATPase and ATP/ADP-scavenging systems defined the lifetimes of specific SUR conformations gating K(ATP) channels. Signal transduction through the catalytic module provides a paradigm for channel/enzyme operation and integrates membrane excitability with metabolic cascades.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Adenosina Trifosfatasas/metabolismo , Activación del Canal Iónico , Canales de Potasio de Rectificación Interna , Canales de Potasio/fisiología , Receptores de Droga/fisiología , Transducción de Señal , Adenosina Difosfato/metabolismo , Adenosina Difosfato/farmacología , Adenosina Trifosfatasas/antagonistas & inhibidores , Adenosina Trifosfatasas/química , Adenosina Trifosfato/metabolismo , Adenosina Trifosfato/farmacología , Animales , Berilio/farmacología , Sitios de Unión , Conductividad Eléctrica , Inhibidores Enzimáticos/farmacología , Fluoruros/farmacología , Cobayas , Hidrólisis , Canales de Potasio/química , Canales de Potasio/genética , Conformación Proteica , Receptores de Droga/química , Receptores de Droga/genética , Proteínas Recombinantes , Receptores de Sulfonilureas , Vanadatos/farmacología
7.
Proc Natl Acad Sci U S A ; 98(13): 7623-8, 2001 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-11390963

RESUMEN

Transduction of energetic signals into membrane electrical events governs vital cellular functions, ranging from hormone secretion and cytoprotection to appetite control and hair growth. Central to the regulation of such diverse cellular processes are the metabolism sensing ATP-sensitive K+ (K(ATP)) channels. However, the mechanism that communicates metabolic signals and integrates cellular energetics with K(ATP) channel-dependent membrane excitability remains elusive. Here, we identify that the response of K(ATP) channels to metabolic challenge is regulated by adenylate kinase phosphotransfer. Adenylate kinase associates with the K(ATP) channel complex, anchoring cellular phosphotransfer networks and facilitating delivery of mitochondrial signals to the membrane environment. Deletion of the adenylate kinase gene compromised nucleotide exchange at the channel site and impeded communication between mitochondria and K(ATP) channels, rendering cellular metabolic sensing defective. Assigning a signal processing role to adenylate kinase identifies a phosphorelay mechanism essential for efficient coupling of cellular energetics with K(ATP) channels and associated functions.


Asunto(s)
Adenosina Trifosfato/metabolismo , Adenilato Quinasa/metabolismo , Isoenzimas/metabolismo , Canales de Potasio de Rectificación Interna , Canales de Potasio/fisiología , Adenosina Difosfato/metabolismo , Adenosina Monofosfato/metabolismo , Adenilato Quinasa/deficiencia , Adenilato Quinasa/genética , Animales , Células COS , Membrana Celular/fisiología , Células Cultivadas , Chlorocebus aethiops , Dinitrofenoles/farmacología , Cobayas , Corazón/fisiología , Isoenzimas/deficiencia , Isoenzimas/genética , Cinética , Ratones , Ratones Noqueados , Mitocondrias/fisiología , Modelos Biológicos , Miocardio/citología , Oligomicinas/farmacología , Canales de Potasio/genética , Proteínas Recombinantes/metabolismo , Sarcolema/enzimología , Transducción de Señal , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA