Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Blood ; 137(19): 2681-2693, 2021 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-33529319

RESUMEN

Patients with isolated pulmonary embolism (PE) have a distinct clinical profile from those with deep vein thrombosis (DVT)-associated PE, with more pulmonary conditions and atherosclerosis. These findings suggest a distinct molecular pathophysiology and the potential involvement of alternative pathways in isolated PE. To test this hypothesis, data from 532 individuals from the Genotyping and Molecular Phenotyping of Venous ThromboEmbolism Project, a multicenter prospective cohort study with extensive biobanking, were analyzed. Targeted, high-throughput proteomics, machine learning, and bioinformatic methods were applied to contrast the acute-phase plasma proteomes of isolated PE patients (n = 96) against those of patients with DVT-associated PE (n = 276) or isolated DVT (n = 160). This resulted in the identification of shared molecular processes between PE phenotypes, as well as an isolated PE-specific protein signature. Shared processes included upregulation of inflammation, response to oxidative stress, and the loss of pulmonary surfactant. The isolated PE-specific signature consisted of 5 proteins: interferon-γ, glial cell line-derived neurotrophic growth factor, polypeptide N-acetylgalactosaminyltransferase 3, peptidyl arginine deiminase type-2, and interleukin-15 receptor subunit α. These proteins were orthogonally validated using cis protein quantitative trait loci. External replication in an independent population-based cohort (n = 5778) further validated the proteomic results and showed that they were prognostic for incident primary isolated PE in individuals without history of VTE (median time to event: 2.9 years; interquartile range: 1.6-4.2 years), supporting their possible involvement in the early pathogenesis. This study has identified molecular overlaps and differences between VTE phenotypes. In particular, the results implicate noncanonical pathways more commonly associated with respiratory and atherosclerotic disease in the acute pathophysiology of isolated PE.


Asunto(s)
Proteoma , Embolia Pulmonar/metabolismo , Transcriptoma , Proteínas de Fase Aguda/biosíntesis , Adulto , Anciano , Aterosclerosis/complicaciones , Comorbilidad , Conjuntos de Datos como Asunto , Femenino , Estudios de Seguimiento , Regulación de la Expresión Génica , Factor Neurotrófico Derivado de la Línea Celular Glial/biosíntesis , Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Humanos , Interferón gamma/biosíntesis , Interferón gamma/genética , Subunidad alfa del Receptor de Interleucina-15/biosíntesis , Subunidad alfa del Receptor de Interleucina-15/genética , Aprendizaje Automático , Masculino , Persona de Mediana Edad , N-Acetilgalactosaminiltransferasas/biosíntesis , N-Acetilgalactosaminiltransferasas/genética , Estrés Oxidativo , Estudios Prospectivos , Mapas de Interacción de Proteínas , Arginina Deiminasa Proteína-Tipo 2/biosíntesis , Arginina Deiminasa Proteína-Tipo 2/genética , Embolia Pulmonar/genética , Embolia Pulmonar/fisiopatología , Surfactantes Pulmonares , Sitios de Carácter Cuantitativo , Tromboembolia Venosa/metabolismo , Polipéptido N-Acetilgalactosaminiltransferasa
2.
Am J Med Genet A ; 182(5): 1021-1031, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32065501

RESUMEN

Both point mutations and deletions of the MYT1L gene as well as microdeletions of chromosome band 2p25.3 including MYT1L are associated with intellectual disability, obesity, and behavioral problems. Thus, MYT1L is assumed to be the-at least mainly-causative gene in the 2p25.3 deletion syndrome. Here, we present comprehensive descriptions of nine novel individuals bearing MYT1L mutations; most of them single nucleotide variants (SNVs). This increases the number of known individuals with causative deletions or SNVs of MYT1L to 51. Since eight of the nine novel patients bear mutations affecting MYT1L only, the total number of such individuals now nearly equals the number of individuals with larger microdeletions affecting additional genes, allowing for a comprehensive phenotypic comparison of these two patient groups. For example, 55% of the individuals with mutations affecting MYT1L only were overweight or obese as compared to 86% of the individuals with larger microdeletions. A similar trend was observed regarding short stature with 5 versus 35%, respectively. However, these differences were nominally significant only after correction for multiple testing, further supporting the hypothesis that MYT1L haploinsufficiency is central to the 2p25.3 deletion phenotype. Most importantly, the large number of individuals with MYT1L mutations presented and reviewed here allowed for the delineation of a more comprehensive clinical picture. Seizures, postnatal short stature, macrocephaly, and microcephaly could be shown to be over-represented among individuals with MYT1L mutations.


Asunto(s)
Predisposición Genética a la Enfermedad , Discapacidad Intelectual/genética , Proteínas del Tejido Nervioso/genética , Obesidad/genética , Factores de Transcripción/genética , Adolescente , Adulto , Niño , Preescolar , Deleción Cromosómica , Cromosomas Humanos Par 2/genética , Femenino , Haploinsuficiencia/genética , Humanos , Discapacidad Intelectual/fisiopatología , Masculino , Análisis por Micromatrices , Microcefalia/genética , Microcefalia/fisiopatología , Obesidad/fisiopatología , Fenotipo , Mutación Puntual , Polimorfismo de Nucleótido Simple/genética , Secuenciación del Exoma , Adulto Joven
3.
Am J Med Genet A ; 173(2): 435-443, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27862890

RESUMEN

Loss-of-function mutations and deletions of the SOX2 gene are known to cause uni- and bilateral anophthalmia and microphthalmia as well as related disorders such as anophthalmia-esophageal-genital syndrome. Thus, anophthalmia/microphthalmia is the primary indication for targeted, "phenotype first" analyses of SOX2. However, SOX2 mutations are also associated with a wide range of non-ocular abnormalities, such as postnatal growth retardation, structural brain anomalies, hypogenitalism, and developmental delay. The present report describes three patients without anophthalmia/microphthalmia and loss-of-function mutations or microdeletions of SOX2 who had been investigated in a "genotype first" manner due to intellectual disability/developmental delay using whole exome sequencing or chromosomal microarray analyses. This result prompted us to perform SOX2 Sanger sequencing in 192 developmental delay/intellectual disability patients without anophthalmia or microphthalmia. No additional SOX2 loss-of-function mutations were detected in this cohort, showing that SOX2 is clearly not a major cause of intellectual disability without anophthalmia/microphthalmia. In our three patients and four further, reported "genotype first" SOX2 microdeletion patients, anophthalmia/microphthalmia was present in less than half of the patients. Thus, SOX2 is another example of a gene whose clinical spectrum is broadened by the generation of "genotype first" findings using hypothesis-free, genome-wide methods. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Estudios de Asociación Genética , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Fenotipo , Mutación Puntual , Factores de Transcripción SOXB1/genética , Eliminación de Secuencia , Encéfalo/anomalías , Preescolar , Hibridación Genómica Comparativa , Exoma , Anomalías del Ojo/diagnóstico , Anomalías del Ojo/genética , Facies , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Recién Nacido , Imagen por Resonancia Magnética/métodos , Masculino , Polimorfismo de Nucleótido Simple , Sistema de Registros
4.
Eur J Hum Genet ; 24(12): 1739-1745, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27436265

RESUMEN

Recently, germline variants of the transcriptional co-regulator gene TCF20 have been implicated in the aetiology of autism spectrum disorders (ASD). However, the knowledge about the associated clinical picture remains fragmentary. In this study, two individuals with de novo TCF20 sequence variants were identified in a cohort of 313 individuals with intellectual disability of unknown aetiology, which was analysed by whole exome sequencing using a child-parent trio design. Both detected variants - one nonsense and one frameshift variant - were truncating. A comprehensive clinical characterisation of the patients yielded mild intellectual disability, postnatal tall stature and macrocephaly, obesity and muscular hypotonia as common clinical signs while ASD was only present in one proband. The present report begins to establish the clinical picture of individuals with de novo nonsense and frameshift variants of TCF20 which includes features such as proportionate overgrowth and muscular hypotonia. Furthermore, intellectual disability/developmental delay seems to be fully penetrant amongst known individuals with de novo nonsense and frameshift variants of TCF20, whereas ASD is shown to be incompletely penetrant. The transcriptional co-regulator gene TCF20 is hereby added to the growing number of genes implicated in the aetiology of both ASD and intellectual disability. Furthermore, such de novo variants of TCF20 may represent a novel differential diagnosis in the overgrowth syndrome spectrum.


Asunto(s)
Trastorno del Espectro Autista/diagnóstico , Codón sin Sentido , Mutación del Sistema de Lectura , Gigantismo/genética , Discapacidad Intelectual/genética , Megalencefalia/genética , Factores de Transcripción/genética , Adolescente , Trastorno del Espectro Autista/genética , Diagnóstico Diferencial , Exoma , Gigantismo/diagnóstico , Humanos , Discapacidad Intelectual/diagnóstico , Masculino , Megalencefalia/diagnóstico , Penetrancia , Síndrome
5.
Birth Defects Res A Clin Mol Teratol ; 106(9): 767-72, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27384521

RESUMEN

BACKGROUND: Nonsyndromic cleft with or without cleft palate (nsCL/P) is a common birth defect. Although genome-wide association studies (GWAS) have identified numerous risk variants, a considerable fraction of the genetic heritability remains unknown. The aim of the present study was to replicate a previous finding that de novo deletions in a 62 kb region of chromosome 7p14 are a risk factor for nsCL/P, using an independent cohort. METHODS: Data from a published case-control GWAS cohort of 399 patients and 1318 controls were used. Copy number variant (CNV) detection in the 62 kb candidate region of 7p14 was performed using QuantiSNP. Putative CNVs in probands were verified and validated by quantitative polymerase chain reaction. Segregation analyses were performed in family members for whom DNA was available. RESULTS: Within the 62 kb candidate region, a deletion of 7.4 kb showed association with nsCL/P (13/387 cases, 20/1300 controls, plowest = 0.024, odds ratio = 2.22). In all families with a sporadic case (n = 3), the deletion occurred de novo. In multiplex families, both incomplete segregation and incomplete penetrance were observed. CONCLUSION: The present data support the hypothesis that deletions at 7p14 are a common risk factor for nsCL/P. Genome-wide CNV analyses in nsCL/P cohorts are warranted to explore the functional relevance of these deletions and their contribution to nsCL/P, and to determine exact breakpoints. Birth Defects Research (Part A) 106:767-772, 2016. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Deleción Cromosómica , Cromosomas Humanos Par 7/genética , Labio Leporino/genética , Bases de Datos de Ácidos Nucleicos , Estudio de Asociación del Genoma Completo , Fisura del Paladar/genética , Femenino , Humanos , Masculino , Factores de Riesgo
6.
Nat Genet ; 48(8): 877-87, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27399968

RESUMEN

Numerous genes are associated with neurodevelopmental disorders such as intellectual disability and autism spectrum disorder (ASD), but their dysfunction is often poorly characterized. Here we identified dominant mutations in the gene encoding the transcriptional repressor and MeCP2 interactor switch-insensitive 3 family member A (SIN3A; chromosome 15q24.2) in individuals who, in addition to mild intellectual disability and ASD, share striking features, including facial dysmorphisms, microcephaly and short stature. This phenotype is highly related to that of individuals with atypical 15q24 microdeletions, linking SIN3A to this microdeletion syndrome. Brain magnetic resonance imaging showed subtle abnormalities, including corpus callosum hypoplasia and ventriculomegaly. Intriguingly, in vivo functional knockdown of Sin3a led to reduced cortical neurogenesis, altered neuronal identity and aberrant corticocortical projections in the developing mouse brain. Together, our data establish that haploinsufficiency of SIN3A is associated with mild syndromic intellectual disability and that SIN3A can be considered to be a key transcriptional regulator of cortical brain development.


Asunto(s)
Corteza Cerebral/patología , Haploinsuficiencia/genética , Discapacidad Intelectual/patología , Proteína 2 de Unión a Metil-CpG/metabolismo , Mutación/genética , Neurogénesis/fisiología , Proteínas Represoras/genética , Anomalías Múltiples , Adolescente , Adulto , Agenesia del Cuerpo Calloso/genética , Agenesia del Cuerpo Calloso/patología , Animales , Corteza Cerebral/metabolismo , Niño , Preescolar , Deleción Cromosómica , Femenino , Humanos , Discapacidad Intelectual/genética , Masculino , Ratones , Persona de Mediana Edad , Fenotipo , Proteínas Represoras/metabolismo , Complejo Correpresor Histona Desacetilasa y Sin3 , Síndrome , Adulto Joven
7.
Birth Defects Res A Clin Mol Teratol ; 106(1): 16-26, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26680650

RESUMEN

BACKGROUND: For the majority of congenital brain malformations, the underlying cause remains unknown. Recent studies have implicated rare copy number variations (CNVs) in their etiology. METHODS: Here, we used array-based molecular karyotyping to search for causative CNVs in 33 fetuses of terminated pregnancies with prenatally detected brain malformations and additional extracerebral anomalies. RESULTS: In 11 fetuses, we identified 15 CNVs (0.08 Mb to 29.59 Mb), comprising four duplications and eleven deletions. All larger CNVs (> 5 Mb) had also been detected by prenatal conventional karyotyping. None of these CNVs was present in our 1307 healthy in-house controls (frequency < 0.0008). Among these CNVs, we prioritized six chromosomal regions (1q25.1, 5q35.1, 6q25.3-qter, 11p14.3, 15q11.2-q13.1, 18q21.1) due to their previous association with human brain malformations or owing to the presence of a single gene expressed in human brain. Prioritized genes within these regions were UBTD2, SKA1, SVIP, and, most convincingly, GPR52. However, re-sequencing of GPR52 in 100 samples from fetuses with brain malformations or patients with intellectual disability and brain malformations revealed no disease-causing mutation. CONCLUSION: Our study suggests chromosomal regions 1q25.1, 5q35.1, 6q25.3-qter, 11p14.3, 15q11.2-q13.1, and 18q21.1 to be involved in human brain development. Within three of these regions, we suggest UBTD2, GPR52, and SKA1 as possible candidate genes. Because the overall detection rate of array-based molecular karyotyping was slightly higher (23%) than that of conventional prenatal karyotyping (20%), we suggest it's use for prenatal diagnostic testing in fetuses with nonisolated brain malformations.


Asunto(s)
Encéfalo/metabolismo , Aberraciones Cromosómicas , Variaciones en el Número de Copia de ADN , Discapacidad Intelectual/genética , Malformaciones del Sistema Nervioso/genética , Adulto , Encéfalo/anomalías , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Femenino , Feto , Dosificación de Gen , Humanos , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/patología , Cariotipificación/instrumentación , Cariotipificación/métodos , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Malformaciones del Sistema Nervioso/diagnóstico , Malformaciones del Sistema Nervioso/patología , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteínas de Unión a Fosfato , Embarazo , Diagnóstico Prenatal , Ubiquitinas/genética , Ubiquitinas/metabolismo
8.
Eur J Hum Genet ; 24(4): 556-61, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26153216

RESUMEN

Intellectual disability (ID) affects 2-3% of the population. In the past, many genetic causes of ID remained unidentified due to its vast heterogeneity. Recently, whole exome sequencing (WES) studies have shown that de novo variants underlie a significant portion of sporadic cases of ID. Applying WES to patients with ID or global developmental delay at different centers, we identified three individuals with distinct de novo variants in HIVEP2 (human immunodeficiency virus type I enhancer binding protein), which belongs to a family of zinc-finger-containing transcriptional proteins involved in growth and development. Two of the variants were nonsense changes, and one was a 1 bp deletion resulting in a premature stop codon that was reported previously without clinical detail. In silico prediction programs suggest loss-of-function in the mutated allele leading to haploinsufficiency as a putative mechanism in all three individuals. All three patients presented with moderate-to-severe ID, minimal structural brain anomalies, hypotonia, and mild dysmorphic features. Growth parameters were in the normal range except for borderline microcephaly at birth in one patient. Two of the patients exhibited behavioral anomalies including hyperactivity and aggression. Published functional data suggest a neurodevelopmental role for HIVEP2, and several of the genes regulated by HIVEP2 are implicated in brain development, for example, SSTR-2, c-Myc, and genes of the NF-κB pathway. In addition, HIVEP2-knockout mice exhibit several working memory deficits, increased anxiety, and hyperactivity. On the basis of the genotype-phenotype correlation and existing functional data, we propose HIVEP2 as a causative ID gene.


Asunto(s)
Codón sin Sentido , Proteínas de Unión al ADN/genética , Discapacidad Intelectual/genética , Factores de Transcripción/genética , Preescolar , Exoma , Femenino , Humanos , Lactante , Discapacidad Intelectual/diagnóstico , Masculino , Adulto Joven
9.
Mol Cytogenet ; 8: 72, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26421060

RESUMEN

BACKGROUND: Most microdeletions involving chromosome sub-bands 9q33.3-9q34.11 to this point have been detected by analyses focused on STXBP1, a gene known to cause early infantile epileptic encephalopathy 4 and other seizure phenotypes. Loss-of-function mutations of STXBP1 have also been identified in some patients with intellectual disability without epilepsy. Consequently, STXBP1 is widely assumed to be the gene causing both seizures and intellectual disability in patients with 9q33.3-q34.11 microdeletions. RESULTS: We report five patients with overlapping microdeletions of chromosome 9q33.3-q34.11, four of them previously unreported. Their common clinical features include intellectual disability, psychomotor developmental delay with delayed or absent speech, muscular hypotonia, and strabismus. Microcephaly and short stature are each present in four of the patients. Two of the patients had seizures. De novo deletions range from 1.23 to 4.13 Mb, whereas the smallest deletion of 432 kb in patient 3 was inherited from her mother who is reported to have mild intellectual disability. The smallest region of overlap (SRO) of these deletions in 9q33.3 does not encompass STXBP1, but includes two genes that have not been previously associated with disease, RALGPS1 and GARNL3. Sequencing of the two SRO genes RALGPS1 and GARNL3 in at least 156 unrelated patients with mild to severe idiopathic intellectual disability detected no causative mutations. Gene expression analyses in our patients demonstrated significantly reduced expression levels of GARNL3, RALGPS1 and STXBP1 only in patients with deletions of the corresponding genes. Thus, reduced expression of STXBP1 was ruled out as a cause for seizures in our patient whose deletion did not encompass STXBP1. CONCLUSIONS: We suggest that microdeletions of this region on chromosome 9q cause a clinical spectrum including intellectual disability, developmental delay especially concerning speech, microcephaly, short stature, mild dysmorphisms, strabismus, and seizures of incomplete penetrance, and may constitute a new contiguous gene deletion syndrome which cannot completely be explained by deletion of STXBP1.

10.
Am J Hum Genet ; 97(3): 493-500, 2015 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-26340335

RESUMEN

CHAMP1 encodes a protein with a function in kinetochore-microtubule attachment and in the regulation of chromosome segregation, both of which are known to be important for neurodevelopment. By trio whole-exome sequencing, we have identified de novo deleterious mutations in CHAMP1 in five unrelated individuals affected by intellectual disability with severe speech impairment, motor developmental delay, muscular hypotonia, and similar dysmorphic features including short philtrum and a tented upper and everted lover lip. In addition to two frameshift and one nonsense mutations, we found an identical nonsense mutation, c.1192C>T (p.Arg398*), in two affected individuals. All mutations, if resulting in a stable protein, are predicted to lead to the loss of the functionally important zinc-finger domains in the C terminus of the protein, which regulate CHAMP1 localization to chromosomes and the mitotic spindle, thereby providing a mechanistic understanding for their pathogenicity. We thus establish deleterious de novo mutations in CHAMP1 as a cause of intellectual disability.


Asunto(s)
Anomalías Múltiples/genética , Anomalías Múltiples/patología , Proteínas Cromosómicas no Histona/genética , Codón sin Sentido/genética , Discapacidad Intelectual/genética , Fosfoproteínas/genética , Trastornos del Habla/genética , Secuencia de Bases , Femenino , Humanos , Masculino , Datos de Secuencia Molecular , Análisis de Secuencia de ADN
11.
Ann Clin Transl Neurol ; 2(5): 492-509, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-26000322

RESUMEN

OBJECTIVE: Short-chain enoyl-CoA hydratase (ECHS1) is a multifunctional mitochondrial matrix enzyme that is involved in the oxidation of fatty acids and essential amino acids such as valine. Here, we describe the broad phenotypic spectrum and pathobiochemistry of individuals with autosomal-recessive ECHS1 deficiency. METHODS: Using exome sequencing, we identified ten unrelated individuals carrying compound heterozygous or homozygous mutations in ECHS1. Functional investigations in patient-derived fibroblast cell lines included immunoblotting, enzyme activity measurement, and a palmitate loading assay. RESULTS: Patients showed a heterogeneous phenotype with disease onset in the first year of life and course ranging from neonatal death to survival into adulthood. The most prominent clinical features were encephalopathy (10/10), deafness (9/9), epilepsy (6/9), optic atrophy (6/10), and cardiomyopathy (4/10). Serum lactate was elevated and brain magnetic resonance imaging showed white matter changes or a Leigh-like pattern resembling disorders of mitochondrial energy metabolism. Analysis of patients' fibroblast cell lines (6/10) provided further evidence for the pathogenicity of the respective mutations by showing reduced ECHS1 protein levels and reduced 2-enoyl-CoA hydratase activity. While serum acylcarnitine profiles were largely normal, in vitro palmitate loading of patient fibroblasts revealed increased butyrylcarnitine, unmasking the functional defect in mitochondrial ß-oxidation of short-chain fatty acids. Urinary excretion of 2-methyl-2,3-dihydroxybutyrate - a potential derivative of acryloyl-CoA in the valine catabolic pathway - was significantly increased, indicating impaired valine oxidation. INTERPRETATION: In conclusion, we define the phenotypic spectrum of a new syndrome caused by ECHS1 deficiency. We speculate that both the ß-oxidation defect and the block in l-valine metabolism, with accumulation of toxic methacrylyl-CoA and acryloyl-CoA, contribute to the disorder that may be amenable to metabolic treatment approaches.

12.
Int J Cancer ; 136(6): E578-89, 2015 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-25219767

RESUMEN

To uncover novel causative genes in patients with unexplained adenomatous polyposis, a model disease for colorectal cancer, we performed a genome-wide analysis of germline copy number variants (CNV) in a large, well characterized APC and MUTYH mutation negative patient cohort followed by a targeted next generation sequencing (NGS) approach. Genomic DNA from 221 unrelated German patients was genotyped on high-resolution SNP arrays. Putative CNVs were filtered according to stringent criteria, compared with those of 531 population-based German controls, and validated by qPCR. Candidate genes were prioritized using in silico, expression, and segregation analyses, data mining and enrichment analyses of genes and pathways. In 27% of the 221 unrelated patients, a total of 77 protein coding genes displayed rare, nonrecurrent, germline CNVs. The set included 26 candidates with molecular and cellular functions related to tumorigenesis. Targeted high-throughput sequencing found truncating point mutations in 12% (10/77) of the prioritized genes. No clear evidence was found for autosomal recessive subtypes. Six patients had potentially causative mutations in more than one of the 26 genes. Combined with data from recent studies of early-onset colorectal and breast cancer, recurrent potential loss-of-function alterations were detected in CNTN6, FOCAD (KIAA1797), HSPH1, KIF26B, MCM3AP, YBEY and in three genes from the ARHGAP family. In the canonical Wnt pathway oncogene CTNNB1 (ß-catenin), two potential gain-of-function mutations were found. In conclusion, the present study identified a group of rarely affected genes which are likely to predispose to colorectal adenoma formation and confirmed previously published candidates for tumor predisposition as etiologically relevant.


Asunto(s)
Poliposis Adenomatosa del Colon/genética , Variaciones en el Número de Copia de ADN , Secuenciación de Nucleótidos de Alto Rendimiento , Adolescente , Adulto , Anciano , Niño , ADN Glicosilasas/genética , Estudio de Asociación del Genoma Completo , Proteínas del Choque Térmico HSP110/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Cinesinas/genética , Persona de Mediana Edad , Proteínas Serina-Treonina Quinasas/genética , beta Catenina/genética
13.
Eur J Hum Genet ; 23(6): 753-60, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25138099

RESUMEN

Intellectual disability (ID) has an estimated prevalence of 2-3%. Due to its extreme heterogeneity, the genetic basis of ID remains elusive in many cases. Recently, whole exome sequencing (WES) studies revealed that a large proportion of sporadic cases are caused by de novo gene variants. To identify further genes involved in ID, we performed WES in 250 patients with unexplained ID and their unaffected parents and included exomes of 51 previously sequenced child-parents trios in the analysis. Exome analysis revealed de novo intragenic variants in SET domain-containing 5 (SETD5) in two patients. One patient carried a nonsense variant, and the other an 81 bp deletion located across a splice-donor site. Chromosomal microarray diagnostics further identified four de novo non-recurrent microdeletions encompassing SETD5. CRISPR/Cas9 mutation modelling of the two intragenic variants demonstrated nonsense-mediated decay of the resulting transcripts, pointing to a loss-of-function (LoF) and haploinsufficiency as the common disease-causing mechanism of intragenic SETD5 sequence variants and SETD5-containing microdeletions. In silico domain prediction of SETD5, a predicted SET domain-containing histone methyltransferase (HMT), substantiated the presence of a SET domain and identified a novel putative PHD domain, strengthening a functional link to well-known histone-modifying ID genes. All six patients presented with ID and certain facial dysmorphisms, suggesting that SETD5 sequence variants contribute substantially to the microdeletion 3p25.3 phenotype. The present report of two SETD5 LoF variants in 301 patients demonstrates a prevalence of 0.7% and thus SETD5 variants as a relatively frequent cause of ID.


Asunto(s)
Codón sin Sentido , Discapacidad Intelectual/genética , Metiltransferasas/genética , Fenotipo , Adolescente , Secuencia de Aminoácidos , Niño , Preescolar , Deleción Cromosómica , Cromosomas Humanos Par 3/genética , Exoma , Femenino , Humanos , Masculino , Metiltransferasas/química , Datos de Secuencia Molecular , Linaje , Polimorfismo de Nucleótido Simple , Estructura Terciaria de Proteína , Síndrome , Adulto Joven
14.
Eur J Hum Genet ; 21(12): 1377-82, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23549274

RESUMEN

The acronym VATER/VACTERL association describes the combination of at least three of the following congenital anomalies: vertebral defects (V), anorectal malformations (A), cardiac defects (C), tracheoesophageal fistula with or without esophageal atresia (TE), renal malformations (R), and limb defects (L). We aimed to identify highly penetrant de novo copy number variations (CNVs) that contribute to VATER/VACTERL association. Array-based molecular karyotyping was performed in a cohort of 41 patients with VATER/VACTERL association and 6 patients with VATER/VACTERL-like phenotype including all of the patients' parents. Three de novo CNVs were identified involving chromosomal regions 1q41, 2q37.3, and 8q24.3 comprising one (SPATA17), two (CAPN10, GPR35), and three (EPPK1, PLEC, PARP10) genes, respectively. Pre-existing data from the literature prompted us to choose GPR35 and EPPK1 for mouse expression studies. Based on these studies, we prioritized GPR35 for sequencing analysis in an extended cohort of 192 patients with VATER/VACTERL association and VATER/VACTERL-like phenotype. Although no disease-causing mutation was identified, our mouse expression studies suggest GPR35 to be involved in the development of the VATER/VACTERL phenotype. Follow-up of GPR35 and the other genes comprising the identified duplications is warranted.


Asunto(s)
Canal Anal/anomalías , Ano Imperforado/genética , Variaciones en el Número de Copia de ADN/genética , Esófago/anomalías , Cardiopatías Congénitas/genética , Riñón/anomalías , Deformidades Congénitas de las Extremidades/genética , Radio (Anatomía)/anomalías , Columna Vertebral/anomalías , Tráquea/anomalías , Anomalías Múltiples/genética , Animales , Femenino , Humanos , Cariotipificación/métodos , Masculino , Ratones , Receptores Acoplados a Proteínas G/genética
15.
Lancet ; 380(9854): 1674-82, 2012 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-23020937

RESUMEN

BACKGROUND: The genetic cause of intellectual disability in most patients is unclear because of the absence of morphological clues, information about the position of such genes, and suitable screening methods. Our aim was to identify de-novo variants in individuals with sporadic non-syndromic intellectual disability. METHODS: In this study, we enrolled children with intellectual disability and their parents from ten centres in Germany and Switzerland. We compared exome sequences between patients and their parents to identify de-novo variants. 20 children and their parents from the KORA Augsburg Diabetes Family Study were investigated as controls. FINDINGS: We enrolled 51 participants from the German Mental Retardation Network. 45 (88%) participants in the case group and 14 (70%) in the control group had de-novo variants. We identified 87 de-novo variants in the case group, with an exomic mutation rate of 1·71 per individual per generation. In the control group we identified 24 de-novo variants, which is 1·2 events per individual per generation. More participants in the case group had loss-of-function variants than in the control group (20/51 vs 2/20; p=0·022), suggesting their contribution to disease development. 16 patients carried de-novo variants in known intellectual disability genes with three recurrently mutated genes (STXBP1, SYNGAP1, and SCN2A). We deemed at least six loss-of-function mutations in six novel genes to be disease causing. We also identified several missense alterations with potential pathogenicity. INTERPRETATION: After exclusion of copy-number variants, de-novo point mutations and small indels are associated with severe, sporadic non-syndromic intellectual disability, accounting for 45-55% of patients with high locus heterogeneity. Autosomal recessive inheritance seems to contribute little in the outbred population investigated. The large number of de-novo variants in known intellectual disability genes is only partially attributable to known non-specific phenotypes. Several patients did not meet the expected syndromic manifestation, suggesting a strong bias in present clinical syndrome descriptions. FUNDING: German Ministry of Education and Research, European Commission 7th Framework Program, and Swiss National Science Foundation.


Asunto(s)
Exoma/genética , Discapacidad Intelectual/genética , Mutación/genética , Estudios de Casos y Controles , Niño , Femenino , Humanos , Masculino
16.
Am J Hum Genet ; 90(3): 565-72, 2012 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-22405089

RESUMEN

Intellectual disability (ID) is a clinically and genetically heterogeneous common condition that remains etiologically unresolved in the majority of cases. Although several hundred diseased genes have been identified in X-linked, autosomal-recessive, or syndromic types of ID, the establishment of an etiological basis remains a difficult task in unspecific, sporadic cases. Just recently, de novo mutations in SYNGAP1, STXBP1, MEF2C, and GRIN2B were reported as relatively common causes of ID in such individuals. On the basis of a patient with severe ID and a 2.5 Mb microdeletion including ARID1B in chromosomal region 6q25, we performed mutational analysis in 887 unselected patients with unexplained ID. In this cohort, we found eight (0.9%) additional de novo nonsense or frameshift mutations predicted to cause haploinsufficiency. Our findings indicate that haploinsufficiency of ARID1B, a member of the SWI/SNF-A chromatin-remodeling complex, is a common cause of ID, and they add to the growing evidence that chromatin-remodeling defects are an important contributor to neurodevelopmental disorders.


Asunto(s)
Ensamble y Desensamble de Cromatina/genética , Proteínas Cromosómicas no Histona/genética , Proteínas de Unión al ADN/genética , Factores de Transcripción/genética , Adolescente , Adulto , Niño , Preescolar , Cromatina/genética , Estudios de Cohortes , Análisis Mutacional de ADN/métodos , Exones , Femenino , Haploinsuficiencia , Humanos , Discapacidad Intelectual , Masculino , Persona de Mediana Edad , Mutación , Adulto Joven
17.
Am J Med Genet A ; 158A(4): 695-706, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22367666

RESUMEN

Detailed molecular-cytogenetic studies combined with thorough clinical characterization are needed to establish genotype-phenotype correlations for specific chromosome deletion syndromes. Although many patients with subtelomeric deletions have been reported, the phenotype maps for many of the corresponding syndromes, including the terminal deletion 14q syndrome, are only slowly emerging. Here, we report on five patients with terminal partial monosomy of 14q32.3 and characteristic features of terminal deletion 14q syndrome. Four of the patients carry de novo terminal deletions of 14q, three of which have not yet been reported. One patient carries an unbalanced translocation der(14)t(9;14)(q34.3;q32.3). Minimum deletion sizes as determined by molecular karyotyping and FISH are 5.82, 5.56, 4.17, 3.54, and 3.29 Mb, respectively. Based on our findings and a comprehensive review of the literature, we refine the phenotype map for typical clinical findings of the terminal deletion 14q syndrome (i.e., intellectual disability/developmental delay, muscular hypotonia, postnatal growth retardation, microcephaly, congenital heart defects, genitourinary malformations, ocular coloboma, and several dysmorphic signs). Combining this phenotype map with benign copy-number variation data available from the Database of Genomic Variants, we propose a small region critical for certain features of the terminal deletion 14q syndrome which contains only seven RefSeq genes.


Asunto(s)
Mapeo Cromosómico , Cromosomas Humanos Par 14/genética , Dosificación de Gen/genética , Estudios de Asociación Genética , Eliminación de Secuencia/genética , Anomalías Múltiples/genética , Adolescente , Niño , Preescolar , Femenino , Genotipo , Alemania , Humanos , Lactante , Masculino , Países Bajos , Fenotipo , Turquía
19.
Eur J Med Genet ; 54(1): 67-72, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-20950717

RESUMEN

Here, we present two patients with overlapping de novo microdeletions in chromosome 2p14-p15, mild mental retardation concerning especially language development, as well as mild dysmorphic features. Patient 1 also presented with generalized seizures, sensorineural hearing loss, and relative microcephaly. In patient 1, molecular karyotyping detected a 2.23-Mb deletion in chromosome 2p14-p15 including 11 known genes. The second patient, with a 2.84-Mb microdeletion containing 15 genes, was identified in the DECIPHER database. The two deleted regions overlap by a stretch of 1.6 Mb that contains 10 genes, several of which have functions in neuronal development. This report illustrates the power of databases such as DECIPHER and MRNET in assessing the pathogenicity of copy-number variations (CNVs).


Asunto(s)
Anomalías Múltiples/genética , Deleción Cromosómica , Cromosomas Humanos Par 12/genética , Discapacidad Intelectual/patología , Anomalías Múltiples/patología , Niño , Hibridación Genómica Comparativa , Bases de Datos Genéticas , Femenino , Dosificación de Gen , Humanos , Cariotipificación , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...