Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38806110

RESUMEN

From review of the very few topical studies to date, we conclude that while effects are variable, microplastics can induce direct ionoregulatory disturbances in freshwater fish and invertebrates. However, the intensity depends on microplastic type, size, concentration, and exposure regime. More numerous are studies where indirect inferences about possible ionoregulatory effects can be drawn; these indicate increased mucus production, altered breathing, histopathological effects on gill structure, oxidative stress, and alterations in molecular pathways. All of these could have negative effects on ionoregulatory homeostasis. However, previous research has suffered from a lack of standardized reporting of microplastic characteristics and exposure conditions. Often overlooked is the fact that microplastics are dynamic contaminants, changing over time through degradation and fragmentation and subsequently exhibiting altered surface chemistry, notably an increased presence and diversity of functional groups. The same functional groups characterized on microplastics are also present in dissolved organic matter, often termed dissolved organic carbon (DOC), a class of substances for which we have a far greater understanding of their ionoregulatory actions. We highlight instances in which the effects of microplastic exposure resemble those of DOC exposure. We propose that in future microplastic investigations, in vivo techniques that have proven useful in understanding the ionoregulatory effects of DOC should be used including measurements of transepithelial potential, net and unidirectional radio-isotopic ion flux rates, and concentration kinetic analyses of uptake transport. More sophisticated in vitro approaches using cultured gill epithelia, Ussing chamber experiments on gill surrogate membranes, and scanning ion selective electrode techniques (SIET) may also prove useful. Finally, in future studies we advocate for minimum reporting requirements of microplastic properties and experimental conditions to help advance this important emerging field.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38329152

RESUMEN

Through emission processes, palladium (Pd) particulates from industrial sources are introduced into a range of ecosystems including freshwater environments. Despite this, research on Pd-induced bioaccumulation, uptake, and toxicity is limited for freshwater fishes. Unlike other metals, there are currently no regulations or protective guidelines to limit Pd release into aquatic systems, indicating a global absence of measures addressing its environmental impact. To assess the olfactory toxicity potential of Pd, the present study aimed to explore Pd accumulation in olfactory tissues, olfactory disruption, and oxidative stress in rainbow trout (Oncorhynchus mykiss) following waterborne Pd exposure. Olfactory sensitivity, measured by electro-olfactography, demonstrated that Pd inhibits multiple pathways of the olfactory system following 96 h of Pd exposure. In this study, the concentrations of Pd for inhibition of olfactory function by 20% (2.5 µg/L; IC20) and 50% (19 µg/L; IC50) were established. Rainbow trout were then exposed to IC20 and IC50 Pd concentrations in combination with varying exposure conditions, as changes in water quality alter the toxicity of metals. Independent to Pd, increased water hardness resulted in decreased olfactory perception owing to ion competition at the olfactory epithelium. No other environmental parameter in this study significantly influenced Pd-induced olfactory toxicity. Membrane-associated Pd was measured at the olfactory rosette and gill following exposure; however, this accumulation did not translate to oxidative stress as measured by the production of malondialdehyde. Our data suggest that Pd is toxic to rainbow trout via waterborne contamination near field-measured levels. This study further demonstrated Pd bioavailability and uptake at water-adjacent tissues, adding to our collective understanding of the toxicological profile of Pd. Taken together, our results provide novel insights into the olfactory toxicity in fish following Pd exposure. Integr Environ Assess Manag 2024;00:1-13. © 2024 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).

3.
Environ Toxicol Chem ; 43(4): 762-771, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38088253

RESUMEN

Benzotriazole ultraviolet (UV) stabilizers (BUVSs) are used in great quantities during industrial production of a variety of consumer and industrial goods. As a result of leaching and spill, BUVSs are detectable ubiquitously in the environment. As of May 2023, citing concerns related to bioaccumulation, biomagnification, and environmental persistence, (B)UV(S)-328 was recommended to be listed under Annex A of the Stockholm Convention on Persistent Organic Pollutants. However, a phaseout of UV-328 could result in a regrettable substitution because the replacement chemical(s) could cause similar or unpredicted toxicity in vivo, relative to UV-328. Therefore, the influence of UV-327, a potential replacement of UV-328, was investigated with respect to early life development of newly fertilized rainbow trout embryos (Oncorhynchus mykiss), microinjected with environmentally relevant concentrations of UV-327. Developmental parameters (standard length), energy consumption (yolk area), heart function, blue sac disease, mortality, and behavior were investigated. Alevins at 14 days posthatching, exposed to 107 ng UV-327 g-1 egg, presented significant signs of hyperactivity; they moved on average 1.8-fold the distance and at 1.5-fold the velocity of controls. Although a substantial reduction in body burden of UV-327 was observed at hatching, it is postulated that UV-327, due to its lipophilic properties, interfered with neurological development and signaling from the onset of neurogenesis. If these results hold true across multiple taxa and species, a potential contributor to neurodevelopmental disorders might have been identified. These findings suggest that UV-327 poses an unknown hazard to rainbow trout embryos and alevins, rendering UV-327 a potential regrettable substitution to UV-328. However, a qualified statement on a regrettable substitution requires a comparative investigation on the teratogenic effects between the two BUVSs. Environ Toxicol Chem 2024;43:762-771. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Asunto(s)
Oncorhynchus mykiss , Animales , Triazoles/toxicidad
4.
Environ Toxicol Chem ; 43(2): 385-397, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37975561

RESUMEN

Benzotriazole ultraviolet stabilizers (BUVSs) are emerging contaminants of concern. They are added to a variety of products, including building materials, personal care products, paints, and plastics, to prevent degradation caused by ultraviolet (UV) light. Despite widespread occurrence in aquatic environments, little is known regarding the effects of BUVSs on aquatic organisms. The aim of the present study was to characterize the effects of exposure to 2-(2H-benzotriazol-2-yl)-4-methylphenol (UV-P) on the reproductive success of zebrafish (Danio rerio) following embryonic exposure. Embryos were exposed, by use of microinjection, to UV-P at <1.5 (control), 2.77, and 24.25 ng/g egg, and reared until sexual maturity, when reproductive performance was assessed, following which molecular and biochemical endpoints were analyzed. Exposure to UV-P did not have a significant effect on fecundity. However, there was a significant effect on fertilization success. Using UV-P-exposed males and females, fertility was decreased by 8.75% in the low treatment group and by 15.02% in the high treatment group relative to control. In a reproduction assay with UV-P-exposed males and control females, fertility was decreased by 11.47% in the high treatment group relative to the control. Embryonic exposure to UV-P might have perturbed male sex steroid synthesis as indicated by small changes in blood plasma concentrations of 17ß-estradiol and 11-ketotestosterone, and small statistically nonsignificant decreases in mRNA abundances of cyp19a1a, cyp11c1, and hsd17b3. In addition, decreased transcript abundances of genes involved in spermatogenesis, such as nanos2 and dazl, were observed. Decreases in later stages of sperm development were observed, suggesting that embryonic exposure to UV-P impaired spematogenesis, resulting in decreased sperm quantity. The present study is the first to demonstrate latent effects of BUVSs, specifically on fish reproduction. Environ Toxicol Chem 2024;43:385-397. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Asunto(s)
Cresoles , Triazoles , Contaminantes Químicos del Agua , Pez Cebra , Animales , Femenino , Masculino , Semen , Reproducción , Fertilidad , Contaminantes Químicos del Agua/metabolismo
5.
Environ Toxicol ; 39(4): 2086-2091, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38100244

RESUMEN

Turbidity can be a result of suspended natural particles, such as sediment, or anthropogenic particles such as microplastics. This study assessed whether Daphnia magna, a pelagic filter feeder known to ingest suspended particles, have an altered response to equally turbid environments caused by the presence of either suspended bentonite or suspended polyethylene microplastics. Compared to controls, daphnids exposed to suspended bentonite maintained their feeding efficiency and increased their digestive activity, as measured by mandibular movement, peristalsis, and expulsion, to pass bentonite through the digestive tract. The same effects were not seen in microplastic-exposed individuals, in which feeding efficiency was decreased and only peristaltic movement was increased but without a coordinated increase in expulsion, suggesting that microplastics do not have the same ability as bentonite to pass through the digestive tract. This study highlights the need to discern the identities of particulates contributing to turbid environments as different particles, even of the same size, can have different effects on filter feeders, which inherently ingest suspended particles.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Animales , Humanos , Plásticos , Daphnia magna , Bentonita , Daphnia/fisiología , Contaminantes Químicos del Agua/toxicidad , Polietileno , Sedimentos Geológicos
6.
Bull Environ Contam Toxicol ; 111(4): 47, 2023 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-37740756

RESUMEN

Copper nanoparticles (CuNPs) and microplastics (MPs) are two emerging contaminants of freshwater systems. Despite their co-occurrence in many water bodies, the combined effects of CuNPs and MPs on aquatic organisms are not well-investigated. In this study, primary cultures of rainbow trout hepatocytes were exposed to dissolved Cu, CuNPs, MPs, or a combination of MPs and CuNPs for 48 h, and the transcript abundances of oxidative stress-related genes were investigated. Exposure to CuNPs or dissolved Cu resulted in a significant increase in the transcript abundances of two antioxidant enzymes, catalase (CAT) and superoxide dismutase (SOD). Exposure to CuNPs also led to an upregulation in the expression of Na+/K+ ATPase alpha 1 subunit (ATP1A1). Microplastics alone or in combination with CuNPs did not have a significant effect on abundances of the target gene transcripts. Overall, our findings suggested acute exposure to CuNPs or dissolved ions may induce oxidative stress in hepatocytes, and the Cu-induced effect on target gene transcripts was not associated with MPs.


Asunto(s)
Nanopartículas , Oncorhynchus mykiss , Animales , Cobre/toxicidad , Microplásticos/toxicidad , Plásticos , Hepatocitos , Nanopartículas/toxicidad , Estrés Oxidativo
7.
Environ Toxicol Pharmacol ; 101: 104195, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37353043

RESUMEN

There is concern that microplastics can act as a vector for cadmium through adsorption and desorption of free-ionic cadmium. Little is known about the uptake of cadmium following ingestion of cadmium-microplastic complexes. This study used an in vitro gut sac technique to investigate the translocation of cadmium across the gut barrier of fathead minnows following the simulated ingestion of cadmium, microplastics, or their complexed mixture. Microplastics did not cross the gut membrane, nor did microplastics alter the rate of cadmium translocation, which was estimated to be 1.2 ± 0.04 ng Cd / hour. Less cadmium translocated when cadmium-microplastic complexes were injected than the equivalent dose of only cadmium, indicating that the presence of microplastics was protective of dietary cadmium uptake. This work highlights the importance of considering dietary uptake and the role of microplastics acting as a vector for cadmium in aquatic environments and stresses the need to understand how environmental (digestive or ambient) characteristics govern cadmium-microplastic interactions.


Asunto(s)
Cyprinidae , Contaminantes Químicos del Agua , Animales , Microplásticos/toxicidad , Plásticos , Cadmio/toxicidad , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis
8.
Environ Toxicol Chem ; 42(6): 1401-1408, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37036245

RESUMEN

There is concern that microplastics can act as a vector for cadmium (Cd), altering the bioavailability and subsequent toxicity of Cd to ecologically important species such as Daphnia magna. The toxicity of Cd to D. magna has been well described; however, what is not known, and what the present study addresses, was how the addition of polyethylene microplastic altered Cd toxicity. Using high-throughput feeding assays and size assessments, the present study quantified effects of exposure to Cd, microplastic, or their mixture on daphnids from neonate to adult. Exposure to Cd inhibited feeding efficiency, while exposure to microplastic inhibited growth rates of juveniles. Daphnia magna coexposed to Cd and microplastic showed significant decreases in both feeding and prereproductive growth rate. There were no differences in life-history traits across any treatments. The alterations of feeding and growth while maintaining reproductive endpoints (time to first brood, reproductive frequency, the number of neonates released at each reproductive event, and the size of neonates produced) might be the result of a shift in energy allocation away from somatic growth, allowing individuals to maintain reproductive output despite lower nutritional reserves. Our findings suggest that cocontamination of microplastic and Cd has additive effects on feeding and growth rates, resulting in a greater energy allocation shift. Environ Toxicol Chem 2023;42:1401-1408. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Asunto(s)
Cadmio , Contaminantes Químicos del Agua , Animales , Cadmio/toxicidad , Cadmio/análisis , Microplásticos , Plásticos/toxicidad , Daphnia , Contaminantes Químicos del Agua/análisis , Polietileno
9.
Aquat Toxicol ; 259: 106538, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37043988

RESUMEN

Microplastics and metals are contaminants detected in many freshwater systems globally. Interactions of microplastics with other contaminants including cadmium poses potential threats to the health of aquatic organisms including Nephelopsis obscura, a predatory leech species that is widespread and serves important ecological and economic roles. The feeding biology of N. obscura has been well-described, including that serotonin regulates feeding behaviour. Further, exposure to cadmium has been found to cause decrease whole-body concentrations of serotonin. The influence that microplastic contamination and co-contamination of cadmium and microplastics has on N. obscura is unknown. The present study had three objectives: (1) to determine if water or sediment contaminated with cadmium, microplastics, or their mixture resulted in greater cadmium uptake by N. obscura, (2) to assess effects of chronic (21-day) exposure of N. obscura to waterborne cadmium, microplastics, and their mixture on bioaccumulation of cadmium, concentrations of serotonin, and feeding behaviour (latency to feeding, time spent feeding, and distance moved), and (3) to reassess the bioaccumulation of cadmium, concentrations of serotonin, and feeding behaviour following transfer to an uncontaminated environment for a one-week recovery period. This study revealed that access to and presence of sediment is protective against cadmium uptake and that cadmium is more readily accumulated from waterborne sources, even in environments where both sediment and surface water are contaminated. After 21-days of exposure to waterborne cadmium, microplastics, and their mixture, accumulation of cadmium, decreased concentrations of serotonin, and impaired feeding behaviours were greatest in leeches from the co-exposures compared to leeches from either single contaminant exposure group. Finally, after one week of depuration and recovery in freshwater following the 21-day exposures, concentrations of serotonin and feeding behaviour were restored in individuals from the microplastic exposure; however, cadmium-exposed individuals continued to show decreased concentrations of serotonin and behavioural deficits. The co-exposure of leeches to cadmium and microplastics resulted in additive effects to serotonin synthesis and feeding behaviour; however, this study demonstrated that leeches were able to recover from microplastic toxicity within a week whereas cadmium toxicity persisted.


Asunto(s)
Sanguijuelas , Contaminantes Químicos del Agua , Humanos , Animales , Microplásticos , Cadmio/toxicidad , Plásticos/toxicidad , Serotonina/farmacología , Contaminantes Químicos del Agua/toxicidad , Conducta Alimentaria , Agua Dulce , Sanguijuelas/fisiología , Agua/farmacología
10.
Ecotoxicology ; 32(2): 273-280, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36746841

RESUMEN

In recent years, there has been an increase in research to understand the consequences of microplastic contamination. A subset of this research assesses the interaction of microplastics with metals and the subsequent effects of the resulting microplastic-metal complexes in freshwater environments. While our understanding of how microplastics behave in freshwater remains largely unknown, our knowledge of metal behavior in those same environments is well-established. The behavior (partitioning, speciation, bioavailability) of metals is highly dependent on environmental characteristics, including water quality variables such as hardness, pH, and dissolved organic matter. This study reveals that despite our understanding of metal behavior, there is little consideration for these influential factors in the current body of microplastic-metal research. Multiple instances highlighted throughout this study show that even when similar plastic, metal, and biota are utilized, there are conflicting observations as to whether the mixture is toxic; we stress that without adequate reporting of environmental conditions, these contradictions are likely to persist without explanation. Through justification of water quality characteristics known to influence metal behavior, this study proposes a framework of reporting requirements for all future microplastic-metal research.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Plásticos , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente , Agua Dulce , Metales
11.
Environ Sci Pollut Res Int ; 29(46): 70380-70395, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35585460

RESUMEN

On August 4, 2014, a tailings dam failed at the Mount Polley copper and gold mine near Likely, British Columbia, Canada, releasing approximately 25 M m[Formula: see text] of contaminated water and solid tailings material into Polley and Quesnel lakes. Water, sediment, freshwater scuds (Hyalella azteca), and mayfly larvae (Ephemeroptera) were collected during the summer of 2018 from Polley Lake, affected and unaffected sites in Quesnel Lake, and both mine-contaminated and clean far-field sites as references. Analytical results indicated that invertebrates from sites affected by the tailings breach had elevated metal concentrations relative to those from non-affected or reference sites. We conducted a controlled laboratory exposure to determine if laboratory-reared Hyalella azteca metal concentrations were related to field-collected water or sediments from the same sites as the field study. Half of the replicates prevented amphipods from directly contacting sediments (water-only exposure), while the other half allowed them direct access (sediment and water exposure). Whole-body Cu concentration was highest in Hyalella exposed to substrate from the most contaminated sites as well as in treatments where they were allowed direct access to sediments. Hyalella having direct access to metal-contaminated sediments showed reduced survival and growth relative to those in reference or control treatments. These results suggest that metals from the fine sediments associated with the Mount Polley mine disaster are bioavailable and potentially toxic to epibenthic invertebrates, even several years after the initial breach.


Asunto(s)
Anfípodos , Desastres , Ephemeroptera , Contaminantes Químicos del Agua , Animales , Colombia Británica , Cobre/toxicidad , Sedimentos Geológicos , Oro , Invertebrados , Lagos , Agua , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
12.
Bull Environ Contam Toxicol ; 103(6): 766-769, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31587083

RESUMEN

The ingestion of microplastics by marine species has been at least partially attributed to plastics emitting a dimethyl sulfide signature when exposed to marine conditions. Dimethyl sulfide, a member of the volatile organic sulfur compounds group, is an infochemical that many species rely on to locate and identify prey while foraging. Microplastic ingestion is also observed in freshwater systems; however, this study shows that the same dimethyl sulfide signature is not obtained by three common types of plastic (high-density polyethylene, low-density polyethylene, and polystyrene) in freshwater systems, suggesting that there may be an alternate mechanism driving plastic ingestion by freshwater species.


Asunto(s)
Agua Dulce/química , Microplásticos/química , Sulfuros/química , Animales , Monitoreo del Ambiente , Microplásticos/análisis , Modelos Químicos , Polietileno/química , Poliestirenos/química , Sulfuros/análisis , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...