Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Elife ; 102021 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-34085637

RESUMEN

Neuroendocrine systems in animals maintain organismal homeostasis and regulate stress response. Although a great deal of work has been done on the neuropeptides and hormones that are released and act on target organs in the periphery, the synaptic inputs onto these neuroendocrine outputs in the brain are less well understood. Here, we use the transmission electron microscopy reconstruction of a whole central nervous system in the Drosophila larva to elucidate the sensory pathways and the interneurons that provide synaptic input to the neurosecretory cells projecting to the endocrine organs. Predicted by network modeling, we also identify a new carbon dioxide-responsive network that acts on a specific set of neurosecretory cells and that includes those expressing corazonin (Crz) and diuretic hormone 44 (Dh44) neuropeptides. Our analysis reveals a neuronal network architecture for combinatorial action based on sensory and interneuronal pathways that converge onto distinct combinations of neuroendocrine outputs.


Asunto(s)
Conectoma , Drosophila melanogaster/ultraestructura , Interneuronas/ultraestructura , Sistemas Neurosecretores/ultraestructura , Células Receptoras Sensoriales/ultraestructura , Sinapsis/ultraestructura , Animales , Animales Modificados Genéticamente , Dióxido de Carbono/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Hormonas de Insectos/genética , Hormonas de Insectos/metabolismo , Interneuronas/metabolismo , Microscopía Electrónica de Transmisión , Neuropéptidos/genética , Neuropéptidos/metabolismo , Sistemas Neurosecretores/metabolismo , Células Receptoras Sensoriales/metabolismo , Sinapsis/metabolismo
2.
PLoS One ; 12(5): e0176689, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28520752

RESUMEN

Antimicrobial peptides (AMPs) are important defense molecules of the innate immune system. High levels of AMPs are induced in response to infections to fight pathogens, whereas moderate levels induced by metabolic stress are thought to shape commensal microbial communities at barrier tissues. We expressed single AMPs in adult flies either ubiquitously or in the gut by using the inducible GeneSwitch system to tightly regulate AMP expression. We found that activation of single AMPs, including Drosocin, resulted in a significant extension of Drosophila lifespan. These animals showed reduced activity of immune pathways over lifetime, less intestinal regenerative processes, reduced stress response and a delayed loss of gut barrier integrity. Furthermore, intestinal Drosocin induction protected the animals against infections with the natural Drosophila pathogen Pseudomonas entomophila, whereas a germ-reduced environment prevented the lifespan extending effect of Drosocin. Our study provides new insights into the crosstalk of innate immunity, intestinal homeostasis and ageing.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/genética , Péptidos Catiónicos Antimicrobianos/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila/fisiología , Longevidad , Adenosina Trifosfato/metabolismo , Animales , Glicopéptidos/genética , Glicopéptidos/metabolismo , Inmunidad , Mucosa Intestinal/metabolismo , Intestinos/inmunología , Longevidad/genética , Longevidad/inmunología , Especies Reactivas de Oxígeno/metabolismo , Regeneración/efectos de los fármacos , Regeneración/inmunología , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/inmunología
3.
Nature ; 463(7279): 369-73, 2010 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-20090753

RESUMEN

The innate immune system represents an ancient host defence mechanism that protects against invading microorganisms. An important class of immune effector molecules to fight pathogen infections are antimicrobial peptides (AMPs) that are produced in plants and animals. In Drosophila, the induction of AMPs in response to infection is regulated through the activation of the evolutionarily conserved Toll and immune deficiency (IMD) pathways. Here we show that AMP activation can be achieved independently of these immunoregulatory pathways by the transcription factor FOXO, a key regulator of stress resistance, metabolism and ageing. In non-infected animals, AMP genes are activated in response to nuclear FOXO activity when induced by starvation, using insulin signalling mutants, or by applying small molecule inhibitors. AMP induction is lost in foxo null mutants but enhanced when FOXO is overexpressed. Expression of AMP genes in response to FOXO activity can also be triggered in animals unable to respond to immune challenges due to defects in both the Toll and IMD pathways. Molecular experiments at the Drosomycin promoter indicate that FOXO directly binds to its regulatory region, thereby inducing its transcription. In vivo studies in Drosophila, but also studies in human lung, gut, kidney and skin cells indicate that a FOXO-dependent regulation of AMPs is evolutionarily conserved. Our results indicate a new mechanism of cross-regulation of metabolism and innate immunity by which AMP genes can be activated under normal physiological conditions in response to the oscillating energy status of cells and tissues. This regulation seems to be independent of the pathogen-responsive innate immunity pathways whose activation is often associated with tissue damage and repair. The sparse production of AMPs in epithelial tissues in response to FOXO may help modulating the defence reaction without harming the host tissues, in particular when animals are suffering from energy shortage or stress.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/inmunología , Factores de Transcripción Forkhead/metabolismo , Homeostasis/genética , Inmunidad Innata/genética , Inmunidad Innata/inmunología , Animales , Péptidos Catiónicos Antimicrobianos/inmunología , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Metabolismo Energético/genética , Metabolismo Energético/inmunología , Epitelio/inmunología , Epitelio/metabolismo , Evolución Molecular , Privación de Alimentos , Proteína Forkhead Box O1 , Regulación de la Expresión Génica , Homeostasis/inmunología , Humanos , Insulina/metabolismo , Receptores Toll-Like/inmunología , Transcripción Genética , Vertebrados/inmunología , Vertebrados/metabolismo
4.
Nature ; 444(7121): 945-8, 2006 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-17167488

RESUMEN

In metazoans, the insulin signalling pathway has a key function in regulating energy metabolism and organismal growth. Its activation stimulates a highly conserved downstream kinase cascade that includes phosphatidylinositol-3-OH kinase (PI(3)K) and the serine-threonine protein kinase Akt. This study identifies a new component of insulin signalling in Drosophila, the steppke gene (step). step encodes a member of the cytohesin family of guanine nucleotide exchange factors (GEFs), which have been characterized as activators for ADP-ribosylation factor (ARF) GTPases. In step mutant animals both cell size and cell number are reduced, resulting in decreased body size and body weight in larvae, pupae and adults. step acts upstream of PI(3)K and is required for the proper regulation of Akt and the transcription factor FOXO. Temporally controlled interference with the GEF activity of the Step protein by feeding the chemical inhibitor SecinH3 causes a block of insulin signalling and a phenocopy of the step mutant growth defect. Step represses its own expression and the synthesis of growth inhibitors such as the translational repressor 4E-BP. Our findings indicate a crucial role of an ARF-GEF in insulin signalling that has implications for understanding insulin-related disorders, such as diabetes and obesity.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Insulina/metabolismo , Transducción de Señal , Animales , Tamaño Corporal , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Regulación de la Expresión Génica , Factores de Intercambio de Guanina Nucleótido/genética , Mutación/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Transcripción Genética
5.
Physiol Genomics ; 25(3): 393-404, 2006 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-16569777

RESUMEN

The reallocation of metabolic resources is important for survival during periods of limited nutrient intake. This has an influence on diverse physiological processes, including reproduction, repair, and aging. One important aspect of resource allocation is the difference between males and females in response to nutrient stress. We identified several groups of genes that are regulated in a sex-biased manner under complete or protein starvation. These range from expected differences in genes involved in reproductive physiology to those involved in amino acid utilization, sensory perception, immune response, and growth control. A striking difference was observed in purine and the tightly interconnected folate metabolism upon protein starvation. From these results, we conclude that the purine and folate metabolic pathway is a major point of transcriptional regulation during resource allocation and may have relevance for understanding the physiological basis for the observed tradeoff between reproduction and longevity.


Asunto(s)
Drosophila/genética , Ácido Fólico/metabolismo , Regulación de la Expresión Génica , Longevidad/fisiología , Purinas/metabolismo , Adaptación Fisiológica , Animales , Carbohidratos de la Dieta/metabolismo , Proteínas en la Dieta/metabolismo , Drosophila/enzimología , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Femenino , Perfilación de la Expresión Génica , Larva/enzimología , Larva/genética , Masculino , Análisis de Secuencia por Matrices de Oligonucleótidos , Reproducción/fisiología , Factores Sexuales , Inanición/enzimología , Inanición/genética , Factores de Tiempo
6.
EMBO J ; 21(22): 6162-73, 2002 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-12426388

RESUMEN

We have identified genes regulated by starvation and sugar signals in Drosophila larvae using whole-genome microarrays. Based on expression profiles in the two nutrient conditions, they were organized into different categories that reflect distinct physiological pathways mediating sugar and fat metabolism, and cell growth. In the category of genes regulated in sugar-fed, but not in starved, animals, there is an upregulation of genes encoding key enzymes of the fat biosynthesis pathway and a downregulation of genes encoding lipases. The highest and earliest activated gene upon sugar ingestion is sugarbabe, a zinc finger protein that is induced in the gut and the fat body. Identification of potential targets using microarrays suggests that sugarbabe functions to repress genes involved in dietary fat breakdown and absorption. The current analysis provides a basis for studying the genetic mechanisms underlying nutrient signalling.


Asunto(s)
Carbohidratos/farmacología , Carbohidratos de la Dieta/farmacología , Grasas de la Dieta/farmacología , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Regulación de la Expresión Génica , Genes de Insecto , Alimentación Animal , Animales , Proteínas de Drosophila/biosíntesis , Proteínas de Drosophila/aislamiento & purificación , Proteínas de Drosophila/fisiología , Drosophila melanogaster/efectos de los fármacos , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Inducción Enzimática/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Lipasa/biosíntesis , Lipasa/genética , Malus , Análisis de Secuencia por Matrices de Oligonucleótidos , Pupa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Inanición/genética , Inanición/metabolismo , Factores de Transcripción/biosíntesis , Factores de Transcripción/genética , Factores de Transcripción/aislamiento & purificación , Levaduras , Dedos de Zinc
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA