Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 9: 595, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29643848

RESUMEN

Table olives are increasingly recognized as a vehicle as well as a source of probiotic bacteria, especially those fermented with traditional procedures based on the activity of indigenous microbial consortia, originating from local environments. In the present study, we report characterization at the species level of 49 Lactic Acid Bacteria (LAB) strains deriving from Nocellara del Belice table olives fermented with the Spanish or Castelvetrano methods, recently isolated in our previous work. Ribosomal 16S DNA analysis allowed identification of 4 Enterococcus gallinarum, 3 E. casseliflavus, 14 Leuconostoc mesenteroides, 19 Lactobacillus pentosus, 7 L. coryniformis, and 2 L. oligofermentans. The L. pentosus and L. coryniformis strains were subjected to further screening to evaluate their probiotic potential, using a combination of in vitro and in vivo approaches. The majority of them showed high survival rates under in vitro simulated gastro-intestinal conditions, and positive antimicrobial activity against Salmonella enterica serovar Typhimurium, Listeria monocytogenes and enterotoxigenic Escherichia coli (ETEC) pathogens. Evaluation of antibiotic resistance to ampicillin, tetracycline, chloramphenicol, or erythromycin was also performed for all selected strains. Three L. coryniformis strains were selected as very good performers in the initial in vitro testing screens, they were antibiotic susceptible, as well as capable of inhibiting pathogen growth in vitro. Parallel screening employing the simplified model organism Caenorhabditis elegans, fed the Lactobacillus strains as a food source, revealed that one L. pentosus and one L. coryniformis strains significantly induced prolongevity effects and protection from pathogen-mediated infection. Moreover, both strains displayed adhesion to human intestinal epithelial Caco-2 cells and were able to outcompete foodborne pathogens for cell adhesion. Overall, these results are suggestive of beneficial features for novel LAB strains, which renders them promising candidates as starters for the manufacturing of fermented table olives with probiotic added value.

2.
Food Microbiol ; 63: 239-247, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28040175

RESUMEN

Table olives are widely consumed worldwide but, due to the presence of NaCl in fermenting brines, they contain high levels of sodium. A promising strategy to lower sodium content is the reduction or substitution of NaCl in brines with other chlorides. However, these procedures may impact safety, spoilage, as well as quality and technological properties, including the evolution and final composition of the fermenting microbiota. In the present work the effects of partially replacing NaCl with KCl in fermenting brines on the microbiological quality of Nocellara del Belice olives produced by Spanish style (Sivigliano) or Castelvetrano methods have been analyzed. In both cases, the fermentation steps were performed in parallel, in brines containing either NaCl alone, or partially replaced with different proportions of KCl (25, 50 and 75%), while maintaining a final saline concentration of 9% (Sivigliano method) or 7% (Castelvetrano). To compare microbial dynamics in the experimental brines, changes in bacterial ecology were monitored during fermentation with a polyphasic approach, including both microbiological methods and culture-independent techniques based on DGGE and NGS analysis. The main microbial groups detected in the olive microbiota from both production procedures were LAB and yeasts. Overall, the data demonstrate that partial replacement of NaCl with KCl does not increase the risk of contamination, nor the overgrowth of pathogens or spoiler microbes.


Asunto(s)
Fermentación , Lactobacillaceae/efectos de los fármacos , Microbiota/fisiología , Olea/microbiología , Sales (Química)/química , Cloruro de Sodio/análisis , Biodiversidad , Reactores Biológicos , Microbiología de Alimentos , Inocuidad de los Alimentos , Concentración de Iones de Hidrógeno , Lactobacillaceae/genética , Microbiota/genética , Reacción en Cadena de la Polimerasa , Cloruro de Potasio/análisis , Cloruro de Potasio/farmacología , Cloruro de Sodio/farmacología , Levaduras/genética , Levaduras/aislamiento & purificación , Levaduras/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA