Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
Front Genet ; 15: 1249751, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38562378

RESUMEN

Esophageal squamous cell carcinoma (ESCC) is the predominant subtype of esophageal cancer in Central Asia, often diagnosed at advanced stages. Understanding population-specific patterns of ESCC is crucial for tailored treatments. This study aimed to unravel ESCC's genetic basis in Kazakhstani patients and identify potential biomarkers for early diagnosis and targeted therapies. ESCC patients from Kazakhstan were studied. We analyzed histological subtypes and conducted in-depth transcriptome sequencing. Differential gene expression analysis was performed, and significantly dysregulated pathways were identified using KEGG pathway analysis (p-value < 0.05). Protein-protein interaction networks were constructed to elucidate key modules and their functions. Among Kazakhstani patients, ESCC with moderate dysplasia was the most prevalent subtype. We identified 42 significantly upregulated and two significantly downregulated KEGG pathways, highlighting molecular mechanisms driving ESCC pathogenesis. Immune-related pathways, such as viral protein interaction with cytokines, rheumatoid arthritis, and oxidative phosphorylation, were elevated, suggesting immune system involvement. Conversely, downregulated pathways were associated with extracellular matrix degradation, crucial in cancer invasion and metastasis. Protein-protein interaction network analysis revealed four distinct modules with specific functions, implicating pathways in esophageal cancer development. High-throughput transcriptome sequencing elucidated critical molecular pathways underlying esophageal carcinogenesis in Kazakhstani patients. Insights into dysregulated pathways offer potential for early diagnosis and precision treatment strategies for ESCC. Understanding population-specific patterns is essential for personalized approaches to ESCC management.

2.
NPJ Syst Biol Appl ; 10(1): 8, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38242871

RESUMEN

The efficiency of analyzing high-throughput data in systems biology has been demonstrated in numerous studies, where molecular data, such as transcriptomics and proteomics, offers great opportunities for understanding the complexity of biological processes. One important aspect of data analysis in systems biology is the shift from a reductionist approach that focuses on individual components to a more integrative perspective that considers the system as a whole, where the emphasis shifted from differential expression of individual genes to determining the activity of gene sets. Here, we present the rROMA software package for fast and accurate computation of the activity of gene sets with coordinated expression. The rROMA package incorporates significant improvements in the calculation algorithm, along with the implementation of several functions for statistical analysis and visualizing results. These additions greatly expand the package's capabilities and offer valuable tools for data analysis and interpretation. It is an open-source package available on github at: www.github.com/sysbio-curie/rROMA . Based on publicly available transcriptomic datasets, we applied rROMA to cystic fibrosis, highlighting biological mechanisms potentially involved in the establishment and progression of the disease and the associated genes. Results indicate that rROMA can detect disease-related active signaling pathways using transcriptomic and proteomic data. The results notably identified a significant mechanism relevant to cystic fibrosis, raised awareness of a possible bias related to cell culture, and uncovered an intriguing gene that warrants further investigation.


Asunto(s)
Fibrosis Quística , Proteómica , Humanos , Proteómica/métodos , Perfilación de la Expresión Génica/métodos , Transcriptoma/genética , Biología de Sistemas/métodos
3.
Eur Urol ; 85(5): 483-494, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-37380559

RESUMEN

BACKGROUND: Molecular understanding of muscle-invasive (MIBC) and non-muscle-invasive (NMIBC) bladder cancer is currently based primarily on transcriptomic and genomic analyses. OBJECTIVE: To conduct proteogenomic analyses to gain insights into bladder cancer (BC) heterogeneity and identify underlying processes specific to tumor subgroups and therapeutic outcomes. DESIGN, SETTING, AND PARTICIPANTS: Proteomic data were obtained for 40 MIBC and 23 NMIBC cases for which transcriptomic and genomic data were already available. Four BC-derived cell lines harboring FGFR3 alterations were tested with interventions. INTERVENTION: Recombinant tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), second mitochondrial-derived activator of caspases mimetic (birinapant), pan-FGFR inhibitor (erdafitinib), and FGFR3 knockdown. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Proteomic groups from unsupervised analyses (uPGs) were characterized using clinicopathological, proteomic, genomic, transcriptomic, and pathway enrichment analyses. Additional enrichment analyses were performed for FGFR3-mutated tumors. Treatment effects on cell viability for FGFR3-altered cell lines were evaluated. Synergistic treatment effects were evaluated using the zero interaction potency model. RESULTS AND LIMITATIONS: Five uPGs, covering both NMIBC and MIBC, were identified and bore coarse-grained similarity to transcriptomic subtypes underlying common features of these different entities; uPG-E was associated with the Ta pathway and enriched in FGFR3 mutations. Our analyses also highlighted enrichment of proteins involved in apoptosis in FGFR3-mutated tumors, not captured through transcriptomics. Genetic and pharmacological inhibition demonstrated that FGFR3 activation regulates TRAIL receptor expression and sensitizes cells to TRAIL-mediated apoptosis, further increased by combination with birinapant. CONCLUSIONS: This proteogenomic study provides a comprehensive resource for investigating NMIBC and MIBC heterogeneity and highlights the potential of TRAIL-induced apoptosis as a treatment option for FGFR3-mutated bladder tumors, warranting a clinical investigation. PATIENT SUMMARY: We integrated proteomics, genomics, and transcriptomics to refine molecular classification of bladder cancer, which, combined with clinical and pathological classification, should lead to more appropriate management of patients. Moreover, we identified new biological processes altered in FGFR3-mutated tumors and showed that inducing apoptosis represents a new potential therapeutic option.


Asunto(s)
Neoplasias Vesicales sin Invasión Muscular , Proteogenómica , Neoplasias de la Vejiga Urinaria , Humanos , Proteómica , Ligandos , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/patología , Apoptosis , Factor de Necrosis Tumoral alfa , Ligando Inductor de Apoptosis Relacionado con TNF/genética , Ligando Inductor de Apoptosis Relacionado con TNF/farmacología , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/genética
4.
Front Bioinform ; 3: 1191961, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37600970

RESUMEN

Important quantities of biological data can today be acquired to characterize cell types and states, from various sources and using a wide diversity of methods, providing scientists with more and more information to answer challenging biological questions. Unfortunately, working with this amount of data comes at the price of ever-increasing data complexity. This is caused by the multiplication of data types and batch effects, which hinders the joint usage of all available data within common analyses. Data integration describes a set of tasks geared towards embedding several datasets of different origins or modalities into a joint representation that can then be used to carry out downstream analyses. In the last decade, dozens of methods have been proposed to tackle the different facets of the data integration problem, relying on various paradigms. This review introduces the most common data types encountered in computational biology and provides systematic definitions of the data integration problems. We then present how machine learning innovations were leveraged to build effective data integration algorithms, that are widely used today by computational biologists. We discuss the current state of data integration and important pitfalls to consider when working with data integration tools. We eventually detail a set of challenges the field will have to overcome in the coming years.

5.
NAR Genom Bioinform ; 5(3): lqad069, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37448589

RESUMEN

Data integration of single-cell RNA-seq (scRNA-seq) data describes the task of embedding datasets gathered from different sources or experiments into a common representation so that cells with similar types or states are embedded close to one another independently from their dataset of origin. Data integration is a crucial step in most scRNA-seq data analysis pipelines involving multiple batches. It improves data visualization, batch effect reduction, clustering, label transfer, and cell type inference. Many data integration tools have been proposed during the last decade, but a surge in the number of these methods has made it difficult to pick one for a given use case. Furthermore, these tools are provided as rigid pieces of software, making it hard to adapt them to various specific scenarios. In order to address both of these issues at once, we introduce the transmorph framework. It allows the user to engineer powerful data integration pipelines and is supported by a rich software ecosystem. We demonstrate transmorph usefulness by solving a variety of practical challenges on scRNA-seq datasets including joint datasets embedding, gene space integration, and transfer of cycle phase annotations. transmorph is provided as an open source python package.

6.
Bioinformatics ; 39(6)2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37289551

RESUMEN

MOTIVATION: Mathematical models of biological processes altered in cancer are built using the knowledge of complex networks of signaling pathways, detailing the molecular regulations inside different cell types, such as tumor cells, immune and other stromal cells. If these models mainly focus on intracellular information, they often omit a description of the spatial organization among cells and their interactions, and with the tumoral microenvironment. RESULTS: We present here a model of tumor cell invasion simulated with PhysiBoSS, a multiscale framework, which combines agent-based modeling and continuous time Markov processes applied on Boolean network models. With this model, we aim to study the different modes of cell migration and to predict means to block it by considering not only spatial information obtained from the agent-based simulation but also intracellular regulation obtained from the Boolean model.Our multiscale model integrates the impact of gene mutations with the perturbation of the environmental conditions and allows the visualization of the results with 2D and 3D representations. The model successfully reproduces single and collective migration processes and is validated on published experiments on cell invasion. In silico experiments are suggested to search for possible targets that can block the more invasive tumoral phenotypes. AVAILABILITY AND IMPLEMENTATION: https://github.com/sysbio-curie/Invasion_model_PhysiBoSS.


Asunto(s)
Modelos Biológicos , Modelos Teóricos , Humanos , Simulación por Computador , Transducción de Señal/genética , Invasividad Neoplásica , Microambiente Tumoral
7.
BMC Bioinformatics ; 24(1): 83, 2023 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-36879200

RESUMEN

BACKGROUND: Exploring the function or the developmental history of cells in various organisms provides insights into a given cell type's core molecular characteristics and putative evolutionary mechanisms. Numerous computational methods now exist for analyzing single-cell data and identifying cell states. These methods mostly rely on the expression of genes considered as markers for a given cell state. Yet, there is a lack of scRNA-seq computational tools to study the evolution of cell states, particularly how cell states change their molecular profiles. This can include novel gene activation or the novel deployment of programs already existing in other cell types, known as co-option. RESULTS: Here we present scEvoNet, a Python tool for predicting cell type evolution in cross-species or cancer-related scRNA-seq datasets. ScEvoNet builds the confusion matrix of cell states and a bipartite network connecting genes and cell states. It allows a user to obtain a set of genes shared by the characteristic signature of two cell states even between distantly-related datasets. These genes can be used as indicators of either evolutionary divergence or co-option occurring during organism or tumor evolution. Our results on cancer and developmental datasets indicate that scEvoNet is a helpful tool for the initial screening of such genes as well as for measuring cell state similarities. CONCLUSION: The scEvoNet package is implemented in Python and is freely available from https://github.com/monsoro/scEvoNet . Utilizing this framework and exploring the continuum of transcriptome states between developmental stages and species will help explain cell state dynamics.


Asunto(s)
Análisis de Expresión Génica de una Sola Célula , Programas Informáticos , Transcriptoma , Biología Computacional
8.
Adv Exp Med Biol ; 1385: 259-279, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36352218

RESUMEN

In recent cancer genomics programs, large-scale profiling of microRNAs has been routinely used in order to better understand the role of microRNAs in gene regulation and disease. To support the analysis of such amount of data, scalability of bioinformatics pipelines is increasingly important to handle larger datasets.Here, we describe a scalable implementation of the clustered miRNA Master Regulator Analysis (clustMMRA) pipeline, developed to search for genomic clusters of microRNAs potentially driving cancer molecular subtyping. Genomically clustered microRNAs can be simultaneously expressed to work in a combined manner and jointly regulate cell phenotypes. However, the majority of computational approaches for the identification of microRNA master regulators are typically designed to detect the regulatory effect of a single microRNA.We have applied the clustMMRA pipeline to multiple pediatric tumor datasets, up to a hundred samples in size, demonstrating very satisfying performances of the software on large datasets. Results have highlighted genomic clusters of microRNAs potentially involved in several subgroups of the different pediatric cancers or specifically involved in the phenotype of a subgroup. In particular, we confirmed the cluster of microRNAs at the 14q32 locus to be involved in multiple pediatric cancers, showing its specific downregulation in tumor subgroups with aggressive phenotype.


Asunto(s)
MicroARNs , Neoplasias , Humanos , MicroARNs/genética , Perfilación de la Expresión Génica/métodos , Neoplasias/genética , Análisis por Conglomerados , Regulación de la Expresión Génica , Biología Computacional , Regulación Neoplásica de la Expresión Génica
9.
Bioinformatics ; 38(10): 2963-2964, 2022 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-35561190

RESUMEN

SUMMARY: We developed BIODICA, an integrated computational environment for application of independent component analysis (ICA) to bulk and single-cell molecular profiles, interpretation of the results in terms of biological functions and correlation with metadata. The computational core is the novel Python package stabilized-ica which provides interface to several ICA algorithms, a stabilization procedure, meta-analysis and component interpretation tools. BIODICA is equipped with a user-friendly graphical user interface, allowing non-experienced users to perform the ICA-based omics data analysis. The results are provided in interactive ways, thus facilitating communication with biology experts. AVAILABILITY AND IMPLEMENTATION: BIODICA is implemented in Java, Python and JavaScript. The source code is freely available on GitHub under the MIT and the GNU LGPL licenses. BIODICA is supported on all major operating systems. URL: https://sysbio-curie.github.io/biodica-environment/.


Asunto(s)
Algoritmos , Programas Informáticos , Biología Computacional/métodos , Metadatos
10.
Bioinformatics ; 38(4): 1045-1051, 2022 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-34871374

RESUMEN

MOTIVATION: Single-cell RNA-seq (scRNAseq) datasets are characterized by large ambient dimensionality, and their analyses can be affected by various manifestations of the dimensionality curse. One of these manifestations is the hubness phenomenon, i.e. existence of data points with surprisingly large incoming connectivity degree in the datapoint neighbourhood graph. Conventional approach to dampen the unwanted effects of high dimension consists in applying drastic dimensionality reduction. It remains unexplored if this step can be avoided thus retaining more information than contained in the low-dimensional projections, by correcting directly hubness. RESULTS: We investigated hubness in scRNAseq data. We show that hub cells do not represent any visible technical or biological bias. The effect of various hubness reduction methods is investigated with respect to the clustering, trajectory inference and visualization tasks in scRNAseq datasets. We show that hubness reduction generates neighbourhood graphs with properties more suitable for applying machine learning methods; and that it outperforms other state-of-the-art methods for improving neighbourhood graphs. As a consequence, clustering, trajectory inference and visualization perform better, especially for datasets characterized by large intrinsic dimensionality. Hubness is an important phenomenon characterizing data point neighbourhood graphs computed for various types of sequencing datasets. Reducing hubness can be beneficial for the analysis of scRNAseq data with large intrinsic dimensionality in which case it can be an alternative to drastic dimensionality reduction. AVAILABILITY AND IMPLEMENTATION: The code used to analyze the datasets and produce the figures of this article is available from https://github.com/sysbio-curie/schubness. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Análisis de la Célula Individual , Transcriptoma , Perfilación de la Expresión Génica , Análisis de Secuencia de ARN , Análisis por Conglomerados
11.
Entropy (Basel) ; 25(1)2022 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-36673174

RESUMEN

Domain adaptation is a popular paradigm in modern machine learning which aims at tackling the problem of divergence (or shift) between the labeled training and validation datasets (source domain) and a potentially large unlabeled dataset (target domain). The task is to embed both datasets into a common space in which the source dataset is informative for training while the divergence between source and target is minimized. The most popular domain adaptation solutions are based on training neural networks that combine classification and adversarial learning modules, frequently making them both data-hungry and difficult to train. We present a method called Domain Adaptation Principal Component Analysis (DAPCA) that identifies a linear reduced data representation useful for solving the domain adaptation task. DAPCA algorithm introduces positive and negative weights between pairs of data points, and generalizes the supervised extension of principal component analysis. DAPCA is an iterative algorithm that solves a simple quadratic optimization problem at each iteration. The convergence of the algorithm is guaranteed, and the number of iterations is small in practice. We validate the suggested algorithm on previously proposed benchmarks for solving the domain adaptation task. We also show the benefit of using DAPCA in analyzing single-cell omics datasets in biomedical applications. Overall, DAPCA can serve as a practical preprocessing step in many machine learning applications leading to reduced dataset representations, taking into account possible divergence between source and target domains.

12.
Front Mol Biosci ; 8: 754444, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34888352

RESUMEN

WebMaBoSS is an easy-to-use web interface for conversion, storage, simulation and analysis of Boolean models that allows to get insight from these models without any specific knowledge of modeling or coding. It relies on an existing software, MaBoSS, which simulates Boolean models using a stochastic approach: it applies continuous time Markov processes over the Boolean network. It was initially built to fill the gap between Boolean and continuous formalisms, i.e., providing semi-quantitative results using a simple representation with a minimum number of parameters to fit. The goal of WebMaBoSS is to simplify the use and the analysis of Boolean models coping with two main issues: 1) the simulation of Boolean models of intracellular processes with MaBoSS, or any modeling tool, may appear as non-intuitive for non-experts; 2) the simulation of already-published models available in current model databases (e.g., Cell Collective, BioModels) may require some extra steps to ensure compatibility with modeling tools such as MaBoSS. With WebMaBoSS, new models can be created or imported directly from existing databases. They can then be simulated, modified and stored in personal folders. Model simulations are performed easily, results visualized interactively, and figures can be exported in a preferred format. Extensive model analyses such as mutant screening or parameter sensitivity can also be performed. For all these tasks, results are stored and can be subsequently filtered to look for specific outputs. This web interface can be accessed at the address: https://maboss.curie.fr/webmaboss/ and deployed locally using docker. This application is open-source under LGPL license, and available at https://github.com/sysbio-curie/WebMaBoSS.

13.
Front Genet ; 12: 683632, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34795689

RESUMEN

Independent Component Analysis is a matrix factorization method for data dimension reduction. ICA has been widely applied for the analysis of transcriptomic data for blind separation of biological, environmental, and technical factors affecting gene expression. The study aimed to analyze the publicly available esophageal cancer data using the ICA for identification and comprehensive analysis of reproducible signaling pathways and molecular signatures involved in this cancer type. In this study, four independent esophageal cancer transcriptomic datasets from GEO databases were used. A bioinformatics tool « BiODICA-Independent Component Analysis of Big Omics Data¼ was applied to compute independent components (ICs). Gene Set Enrichment Analysis (GSEA) and ToppGene uncovered the most significantly enriched pathways. Construction and visualization of gene networks and graphs were performed using the Cytoscape, and HPRD database. The correlation graph between decompositions into 30 ICs was built with absolute correlation values exceeding 0.3. Clusters of components-pseudocliques were observed in the structure of the correlation graph. The top 1,000 most contributing genes of each ICs in the pseudocliques were mapped to the PPI network to construct associated signaling pathways. Some cliques were composed of densely interconnected nodes and included components common to most cancer types (such as cell cycle and extracellular matrix signals), while others were specific to EC. The results of this investigation may reveal potential biomarkers of esophageal carcinogenesis, functional subsystems dysregulated in the tumor cells, and be helpful in predicting the early development of a tumor.

14.
Entropy (Basel) ; 23(10)2021 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-34682092

RESUMEN

Dealing with uncertainty in applications of machine learning to real-life data critically depends on the knowledge of intrinsic dimensionality (ID). A number of methods have been suggested for the purpose of estimating ID, but no standard package to easily apply them one by one or all at once has been implemented in Python. This technical note introduces scikit-dimension, an open-source Python package for intrinsic dimension estimation. The scikit-dimension package provides a uniform implementation of most of the known ID estimators based on the scikit-learn application programming interface to evaluate the global and local intrinsic dimension, as well as generators of synthetic toy and benchmark datasets widespread in the literature. The package is developed with tools assessing the code quality, coverage, unit testing and continuous integration. We briefly describe the package and demonstrate its use in a large-scale (more than 500 datasets) benchmarking of methods for ID estimation for real-life and synthetic data.

16.
iScience ; 24(4): 102365, 2021 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-33889829

RESUMEN

Multilayer networks allow interpreting the molecular basis of diseases, which is particularly challenging in rare diseases where the number of cases is small compared with the size of the associated multi-omics datasets. In this work, we develop a dimensionality reduction methodology to identify the minimal set of genes that characterize disease subgroups based on their persistent association in multilayer network communities. We use this approach to the study of medulloblastoma, a childhood brain tumor, using proteogenomic data. Our approach is able to recapitulate known medulloblastoma subgroups (accuracy >94%) and provide a clear characterization of gene associations, with the downstream implications for diagnosis and therapeutic interventions. We verified the general applicability of our method on an independent medulloblastoma dataset (accuracy >98%). This approach opens the door to a new generation of multilayer network-based methods able to overcome the specific dimensionality limitations of rare disease datasets.

17.
Eur J Cancer ; 149: 193-210, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33866228

RESUMEN

The rising interest for precise characterization of the tumour immune contexture has recently brought forward the high potential of RNA sequencing (RNA-seq) in identifying molecular mechanisms engaged in the response to immunotherapy. In this review, we provide an overview of the major principles of single-cell and conventional (bulk) RNA-seq applied to onco-immunology. We describe standard preprocessing and statistical analyses of data obtained from such techniques and highlight some computational challenges relative to the sequencing of individual cells. We notably provide examples of gene expression analyses such as differential expression analysis, dimensionality reduction, clustering and enrichment analysis. Additionally, we used public data sets to exemplify how deconvolution algorithms can identify and quantify multiple immune subpopulations from either bulk or single-cell RNA-seq. We give examples of machine and deep learning models used to predict patient outcomes and treatment effect from high-dimensional data. Finally, we balance the strengths and weaknesses of single-cell and bulk RNA-seq regarding their applications in the clinic.


Asunto(s)
Biomarcadores de Tumor/genética , Perfilación de la Expresión Génica , Neoplasias/genética , Neoplasias/inmunología , ARN Neoplásico/genética , RNA-Seq , Análisis de la Célula Individual , Transcriptoma , Microambiente Tumoral/inmunología , Inteligencia Artificial , Toma de Decisiones Clínicas , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Medicina de Precisión , Valor Predictivo de las Pruebas , Pronóstico
18.
Front Mol Biosci ; 8: 793912, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35178429

RESUMEN

Cell cycle is a biological process underlying the existence and propagation of life in time and space. It has been an object for mathematical modeling for long, with several alternative mechanistic modeling principles suggested, describing in more or less details the known molecular mechanisms. Recently, cell cycle has been investigated at single cell level in snapshots of unsynchronized cell populations, exploiting the new methods for transcriptomic and proteomic molecular profiling. This raises a need for simplified semi-phenomenological cell cycle models, in order to formalize the processes underlying the cell cycle, at a higher abstracted level. Here we suggest a modeling framework, recapitulating the most important properties of the cell cycle as a limit trajectory of a dynamical process characterized by several internal states with switches between them. In the simplest form, this leads to a limit cycle trajectory, composed by linear segments in logarithmic coordinates describing some extensive (depending on system size) cell properties. We prove a theorem connecting the effective embedding dimensionality of the cell cycle trajectory with the number of its linear segments. We also develop a simplified kinetic model with piecewise-constant kinetic rates describing the dynamics of lumps of genes involved in S-phase and G2/M phases. We show how the developed cell cycle models can be applied to analyze the available single cell datasets and simulate certain properties of the observed cell cycle trajectories. Based on our model, we can predict with good accuracy the cell line doubling time from the length of cell cycle trajectory.

19.
Methods Mol Biol ; 2226: 303-333, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33326111

RESUMEN

Ewing sarcoma (EwS) is a highly aggressive pediatric bone cancer that is defined by a somatic fusion between the EWSR1 gene and an ETS family member, most frequently the FLI1 gene, leading to expression of a chimeric transcription factor EWSR1-FLI1. Otherwise, EwS is one of the most genetically stable cancers. The situation when the major cancer driver is well known looks like a unique opportunity for applying the systems biology approach in order to understand the EwS mechanisms as well as to uncover some general mechanistic principles of carcinogenesis. A number of studies have been performed revealing the direct and indirect effects of EWSR1-FLI1 on multiple aspects of cellular life. Nevertheless, the emerging picture of the oncogene action appears to be highly complex and systemic, with multiple reciprocal influences between the immediate consequences of the driver mutation and intracellular and intercellular molecular mechanisms, including regulation of transcription, epigenome, and tumoral microenvironment. In this chapter, we present an overview of existing molecular profiling resources available for EwS tumors and cell lines and provide an online comprehensive catalogue of publicly available omics and other datasets. We further highlight the systems biology studies of EwS, involving mathematical modeling of networks and integration of molecular data. We conclude that despite the seeming simplicity, a lot has yet to be understood on the systems-wide mechanisms connecting the driver mutation and the major cellular phenotypes of this pediatric cancer. Overall, this chapter can serve as a guide for a systems biology researcher to start working on EwS.


Asunto(s)
Neoplasias Óseas/etiología , Neoplasias Óseas/metabolismo , Sarcoma de Ewing/etiología , Sarcoma de Ewing/metabolismo , Biología de Sistemas , Neoplasias Óseas/patología , Bases de Datos Genéticas , Genómica/métodos , Humanos , Metabolómica/métodos , Modelos Teóricos , Proteómica/métodos , Sarcoma de Ewing/patología , Biología de Sistemas/métodos , Navegador Web
20.
Entropy (Basel) ; 22(3)2020 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-33286070

RESUMEN

Multidimensional datapoint clouds representing large datasets are frequently characterized by non-trivial low-dimensional geometry and topology which can be recovered by unsupervised machine learning approaches, in particular, by principal graphs. Principal graphs approximate the multivariate data by a graph injected into the data space with some constraints imposed on the node mapping. Here we present ElPiGraph, a scalable and robust method for constructing principal graphs. ElPiGraph exploits and further develops the concept of elastic energy, the topological graph grammar approach, and a gradient descent-like optimization of the graph topology. The method is able to withstand high levels of noise and is capable of approximating data point clouds via principal graph ensembles. This strategy can be used to estimate the statistical significance of complex data features and to summarize them into a single consensus principal graph. ElPiGraph deals efficiently with large datasets in various fields such as biology, where it can be used for example with single-cell transcriptomic or epigenomic datasets to infer gene expression dynamics and recover differentiation landscapes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...