Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 62(14): e202219217, 2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-36719064

RESUMEN

Lignin, the world's largest resource of renewable aromatics, with annually roughly 50 million tons of accruing technical lignin, mainly Kraft lignin, is highly underdeveloped regarding the production of monoaromatics. We demonstrate the oxidative depolymerization of Kraft lignin at 180 °C to produce vanillin 1 in yields up to 6.2 wt % and 92 % referred to the maximum yield gained from the quantification reaction utilizing nitrobenzene. Using peroxodicarbonate (C2 O6 2- ) as "green" oxidizer for the degradation, toxic and/or harmful reagents are prevented. Also, the formed waste can serve as makeup chemical in the pulping process. Na2 C2 O6 is synthesized in an ex-cell electrolysis of aqueous Na2 CO3 at BDD anodes, achieving a yield of Na2 C2 O6 with 41 %. At least, the oxidation and degradation of Kraft lignin is analysis via UV/Vis and NMR spectroscopy.

2.
Angew Chem Int Ed Engl ; 61(25): e202117563, 2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-35384198

RESUMEN

Peroxodicarbonates are of substantial interest as potentially powerful and sustainable oxidizers but have so far been accessible only in low concentrations with unsatisfactory energy efficiency. Concentrated (> 0.9 mol L-1 ) peroxodicarbonate solutions have now been made accessible by the electrolysis of aqueous K2 CO3 /Na2 CO3 /KHCO3 solutions at high current density of 3.33 A cm-2 in an efficiently cooled circular flow reactor equipped with a boron-doped diamond anode and a stainless-steel cathode. Their synthetic potential as platform oxidizers was clearly demonstrated in transformations including sulfoxidation, N-oxidation, and epoxidation.

3.
Angew Chem Int Ed Engl ; 57(21): 6018-6041, 2018 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-29359378

RESUMEN

The use of electricity instead of stoichiometric amounts of oxidizers or reducing agents in synthesis is very appealing for economic and ecological reasons, and represents a major driving force for research efforts in this area. To use electron transfer at the electrode for a successful transformation in organic synthesis, the intermediate radical (cation/anion) has to be stabilized. Its combination with other approaches in organic chemistry or concepts of contemporary synthesis allows the establishment of powerful synthetic methods. The aim in the 21st Century will be to use as little fossil carbon as possible and, for this reason, the use of renewable sources is becoming increasingly important. The direct conversion of renewables, which have previously mainly been incinerated, is of increasing interest. This Review surveys many of the recent seminal important developments which will determine the future of this dynamic emerging field.

4.
Angew Chem Int Ed Engl ; 57(20): 5594-5619, 2018 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-29292849

RESUMEN

The direct synthetic organic use of electricity is currently experiencing a renaissance. More synthetically oriented laboratories working in this area are exploiting both novel and more traditional concepts, paving the way to broader applications of this niche technology. As only electrons serve as reagents, the generation of reagent waste is efficiently avoided. Moreover, stoichiometric reagents can be regenerated and allow a transformation to be conducted in an electrocatalytic fashion. However, the application of electroorganic transformations is more than minimizing the waste footprint, it rather gives rise to inherently safe processes, reduces the number of steps of many syntheses, allows for milder reaction conditions, provides alternative means to access desired structural entities, and creates intellectual property (IP) space. When the electricity originates from renewable resources, this surplus might be directly employed as a terminal oxidizing or reducing agent, providing an ultra-sustainable and therefore highly attractive technique. This Review surveys recent developments in electrochemical synthesis that will influence the future of this area.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...