Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 42(12): 113574, 2023 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-38100356

RESUMEN

Multiple sclerosis (MS) is an inflammatory disease characterized by myelin loss. While therapies exist to slow MS progression, no treatment currently exists for remyelination. Remyelination, linked to reduced disability in MS, relies on microglia and monocyte-derived macrophages (MDMs). This study aims to understand the role of microglia during remyelination by lineage tracing and depleting them. Microglial lineage tracing reveals that both microglia and MDMs initially accumulate, but microglia later dominate the lesion. Microglia and MDMs engulf equal amounts of inhibitory myelin debris, but after microglial depletion, MDMs compensate by engulfing more myelin debris. Microglial depletion does, however, reduce the recruitment and proliferation of oligodendrocyte progenitor cells (OPCs) and impairs their subsequent differentiation and remyelination. These findings underscore the essential role of microglia during remyelination and offer insights for enhancing this process by understanding microglial regulation of remyelination.


Asunto(s)
Enfermedades Desmielinizantes , Esclerosis Múltiple , Remielinización , Humanos , Vaina de Mielina/patología , Microglía/patología , Enfermedades Desmielinizantes/patología , Macrófagos/patología , Esclerosis Múltiple/patología
2.
Sci Rep ; 13(1): 17061, 2023 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-37816793

RESUMEN

Aotearoa New Zealand's Northern region is a major gateway for the incursion and establishment of non-indigenous species (NIS) populations due to high numbers of recreational and commercial vessels. This region also holds a unique marine ecosystem, home to many taonga (treasured) species of cultural and economic importance. Regular surveillance, eradication plans and public information sharing are undertaken by local communities and governmental organizations to protect these ecosystems from the impact of NIS. Recently, considerable investments went into environmental DNA (eDNA) research, a promising approach for the early detection of NIS for complementing existing biosecurity systems. We applied eDNA metabarcoding for elucidating bioregional patterns of NIS distributions across a gradient from harbors (NIS hotspots) to open seas (spreading areas). Samples were collected during a research cruise sailing across three Aotearoa New Zealand harbors, Waitemata, Whangarei and Pewhairangi (Bay of Islands), and their adjacent coastal waters. The small-ribosomal subunit (18S rRNA) and mitochondrial cytochrome c oxidase I (COI) genes were screened using the online Pest Alert Tool for automated detection of putative NIS sequences. Using a probabilistic modelling approach, location-dependent occupancies of NIS were investigated and related to the current information on species distribution from biosecurity surveillance programs. This study was collaboratively designed with Maori partners to initiate a model of co-governance within the existing science system.


Asunto(s)
Conservación de los Recursos Naturales , ADN Ambiental , ADN Ambiental/genética , Ecosistema , Nueva Zelanda , Océanos y Mares
3.
Mar Pollut Bull ; 190: 114829, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36958116

RESUMEN

Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) is currently the gold-standard technique for detecting and quantifying messenger RNA. However, without proper validation, the method may produce artefactual and non-reproducible cycle threshold values generating poor-quality data. The newer droplet digital PCR (ddPCR) method allows for the absolute quantification of targeted nucleic acids providing more sensitive and accurate measurements without requiring external standards. This study compared these two PCR-based methods to measure the expression of well-documented genes used in ecotoxicology studies. We exposed Mediterranean mussels (Mytilus galloprovincialis) to copper and analyzed gene expression in gills and digestive glands using RT-qPCR and ddPCR assays. A step-by-step methodology to optimize and compare the two technologies is described. After ten-fold serial complementary DNA dilution, both RT-qPCR and ddPCR exhibited comparable linearity and efficiency and produced statistically similar results. We conclude that ddPCR is a suitable method to assess gene expression in an ecotoxicological context. However, RT-qPCR has a shorter processing time and remains more cost-effective.


Asunto(s)
Ecotoxicología , Transcripción Reversa , Animales , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Biomarcadores
4.
Mol Ecol Resour ; 23(2): 440-452, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36226834

RESUMEN

Environmental DNA (eDNA) analyses are powerful for describing marine biodiversity but must be optimized for their effective use in routine monitoring. To maximize eDNA detection probabilities of sparsely distributed populations, water samples are usually concentrated from larger volumes and filtered using fine-pore membranes, often a significant cost-time bottleneck in the workflow. This study aimed to streamline eDNA sampling by investigating plankton net versus bucket sampling, direct versus sequential filtration including self-preserving filters. Biodiversity was assessed using metabarcoding of the small ribosomal subunit (18S rRNA) and mitochondrial cytochrome c oxidase I (COI) genes. Multispecies detection probabilities were estimated for each workflow using a probabilistic occupancy modelling approach. Significant workflow-related differences in biodiversity metrics were reported. Highest amplicon sequence variant (ASV) richness was attained by the bucket sampling combined with self-preserving filters, comprising a large portion of microplankton. Less diversity but more metazoan taxa were captured in the net samples combined with 5 µm pore size filters. Prefiltered 1.2 µm samples yielded few or no unique ASVs. The highest average (~32%) metazoan detection probabilities in the 5 µm pore size net samples confirmed the effectiveness of preconcentration plankton for biodiversity screening. These results contribute to streamlining eDNA sampling protocols for uptake and implementation in marine biodiversity research and surveillance.


Asunto(s)
ADN Ambiental , Animales , ADN Ambiental/genética , ADN Ambiental/análisis , Código de Barras del ADN Taxonómico/métodos , Biodiversidad , Plancton/genética , Monitoreo del Ambiente/métodos
5.
Mol Neurodegener ; 17(1): 82, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36514132

RESUMEN

BACKGROUND: Microglia regulate the response to injury and disease in the brain and spinal cord. In white matter diseases microglia may cause demyelination. However, how microglia respond and regulate demyelination is not fully understood. METHODS: To understand how microglia respond during demyelination, we fed mice cuprizone-a potent demyelinating agent-and assessed the dynamics of genetically fate-mapped microglia. We then used single-cell RNA sequencing to identify and track the microglial subpopulations that arise during demyelination. To understand how microglia contribute to the clearance of dead oligodendrocytes, we ablated microglia starting at the peak of cuprizone-induced cell death and used the viability dye acridine orange to monitor apoptotic and lytic cell morphologies after microglial ablation. Lastly, we treated serum-free primary microglial cultures to model distinct aspects of cuprizone-induced demyelination and assessed the response. RESULTS: The cuprizone diet generated a robust microglial response by week 4 of the diet. Single-cell RNA sequencing at this time point revealed the presence of several cuprizone-associated microglia (CAM) clusters. These clusters expressed a transcriptomic signature indicative of cytokine regulation and reactive oxygen species production with altered lysosomal and metabolic changes consistent with ongoing phagocytosis. Using acridine orange to monitor apoptotic and lytic cell death after microglial ablation, we found that microglia preferentially phagocytose lytic carcasses. In culture, microglia exposed to lytic carcasses partially recapitulated the CAM state, suggesting that phagocytosis contributes to this distinct microglial state during cuprizone demyelination. CONCLUSIONS: Microglia serve multiple roles during demyelination, yet their transcriptomic state resembles other neurodegenerative conditions. The phagocytosis of cellular debris is likely a universal cause for a common neurodegenerative microglial state.


Asunto(s)
Cuprizona , Enfermedades Desmielinizantes , Animales , Ratones , Cuprizona/toxicidad , Cuprizona/metabolismo , Microglía/metabolismo , Enfermedades Desmielinizantes/inducido químicamente , Enfermedades Desmielinizantes/metabolismo , Transcriptoma , Naranja de Acridina/efectos adversos , Naranja de Acridina/metabolismo , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad
6.
Mol Neurodegener ; 17(1): 34, 2022 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-35526004

RESUMEN

BACKGROUND: The dietary consumption of cuprizone - a copper chelator - has long been known to induce demyelination of specific brain structures and is widely used as model of multiple sclerosis. Despite the extensive use of cuprizone, the mechanism by which it induces demyelination are still unknown. With this review we provide an updated understanding of this model, by showcasing two distinct yet overlapping modes of action for cuprizone-induced demyelination; 1) damage originating from within the oligodendrocyte, caused by mitochondrial dysfunction or reduced myelin protein synthesis. We term this mode of action 'intrinsic cell damage'. And 2) damage to the oligodendrocyte exerted by inflammatory molecules, brain resident cells, such as oligodendrocytes, astrocytes, and microglia or peripheral immune cells - neutrophils or T-cells. We term this mode of action 'extrinsic cellular damage'. Lastly, we summarize recent developments in research on different forms of cell death induced by cuprizone, which could add valuable insights into the mechanisms of cuprizone toxicity. With this review we hope to provide a modern understanding of cuprizone-induced demyelination to understand the causes behind the demyelination in MS.


Asunto(s)
Cuprizona , Enfermedades Desmielinizantes , Animales , Astrocitos/metabolismo , Cuprizona/metabolismo , Cuprizona/toxicidad , Enfermedades Desmielinizantes/inducido químicamente , Enfermedades Desmielinizantes/metabolismo , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos C57BL , Microglía/metabolismo , Vaina de Mielina , Oligodendroglía/metabolismo
7.
Nat Cell Biol ; 23(6): 652-663, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34083785

RESUMEN

Expression of exon-specific isoforms from alternatively spliced mRNA is a fundamental mechanism that substantially expands the proteome of a cell. However, conventional methods to assess alternative splicing are either consumptive and work-intensive or do not quantify isoform expression longitudinally at the protein level. Here, we therefore developed an exon-specific isoform expression reporter system (EXSISERS), which non-invasively reports the translation of exon-containing isoforms of endogenous genes by scarlessly excising reporter proteins from the nascent polypeptide chain through highly efficient, intein-mediated protein splicing. We applied EXSISERS to quantify the inclusion of the disease-associated exon 10 in microtubule-associated protein tau (MAPT) in patient-derived induced pluripotent stem cells and screened Cas13-based RNA-targeting effectors for isoform specificity. We also coupled cell survival to the inclusion of exon 18b of FOXP1, which is involved in maintaining pluripotency of embryonic stem cells, and confirmed that MBNL1 is a dominant factor for exon 18b exclusion. EXSISERS enables non-disruptive and multimodal monitoring of exon-specific isoform expression with high sensitivity and cellular resolution, and empowers high-throughput screening of exon-specific therapeutic interventions.


Asunto(s)
Empalme Alternativo , Factores de Transcripción Forkhead/metabolismo , Ensayos Analíticos de Alto Rendimiento , Células Madre Pluripotentes Inducidas/metabolismo , Proteómica , Estabilidad del ARN , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Represoras/metabolismo , Proteínas tau/metabolismo , Sistemas CRISPR-Cas , Exones , Factores de Transcripción Forkhead/genética , Células HEK293 , Humanos , Isoformas de Proteínas , Proteoma , ARN Mensajero/genética , Proteínas de Unión al ARN/genética , Proteínas Represoras/genética , Análisis de la Célula Individual , Proteínas tau/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA