Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mol Cell ; 28(5): 860-70, 2007 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-18082610

RESUMEN

Transcriptional and posttranslational signals are known mechanisms that promote efficient responses to DNA damage. We have identified Saccharomyces cerevisiae tRNA methyltransferase 9 (Trm9) as an enzyme that prevents cell death via translational enhancement of DNA damage response proteins. Trm9 methylates the uridine wobble base of tRNAARG(UCU) and tRNAGLU(UUC). We used computational and molecular approaches to predict that Trm9 enhances the translation of some transcripts overrepresented with specific arginine and glutamic acid codons. We found that translation elongation factor 3 (YEF3) and the ribonucleotide reductase (RNR1 and RNR3) large subunits are overrepresented with specific arginine and glutamic acid codons, and we demonstrated that Trm9 significantly enhances Yef3, Rnr1, and Rnr3 protein levels. Additionally, we identified 425 genes, which included YEF3, RNR1, and RNR3, with a unique codon usage pattern linked to Trm9. We propose that Trm9-specific tRNA modifications enhance codon-specific translation elongation and promote increased levels of key damage response proteins.


Asunto(s)
Daño del ADN , Extensión de la Cadena Peptídica de Translación , ARN de Transferencia de Arginina/metabolismo , ARN de Transferencia de Ácido Glutámico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , ARNt Metiltransferasas/metabolismo , Catálisis , Codón , Metilación , Factores de Elongación de Péptidos/genética , Factores de Elongación de Péptidos/metabolismo , Biosíntesis de Proteínas , Ribonucleósido Difosfato Reductasa/genética , Ribonucleósido Difosfato Reductasa/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , beta-Galactosidasa/metabolismo , ARNt Metiltransferasas/genética
2.
Eukaryot Cell ; 5(7): 1007-17, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16835445

RESUMEN

The Ssn6/Tup1 general repression complex represses transcription of a number of regulons through recruitment by regulon-specific DNA-binding repressors. Rox1 and Mot3 are Ssn6/Tup1-recruiting, DNA-binding proteins that repress the hypoxic genes, and Rfx1 is a Ssn6/Tup1-recruiting, a DNA-binding protein that represses the DNA damage-inducible genes. We previously reported that Rox1 and Mot3 functioned synergistically to repress a subset of the hypoxic genes and that this synergy resulted from an indirect interaction through Ssn6. We report here cross-regulation between Rox1 and Mot3 and Rfx1 in the regulation of the RNR genes encoding ribonucleotide diphosphate reductase. Using a set of strains containing single and multiple mutations in the repressor encoding genes and lacZ fusions to the RNR2 to -4 genes, we demonstrated that Rox1 repressed all three genes and that Mot3 repressed RNR3 and RNR4. Each repressor could act synergistically with the others, and synergy required closely spaced sites. Using artificial constructs containing two repressor sites, we confirmed that all three proteins could function synergistically but that two Rox1 sites or two Rfx1 sites could not. The significance of this synergy lies in the ability to repress gene transcription strongly under normal growth conditions, and yet allow robust induction under conditions that inactivate only one of the repressors. Since the interaction between the proteins is indirect, the evolution of dually regulated genes requires only the acquisition of closely spaced repressor sites.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Proteínas Represoras/metabolismo , Ribonucleótido Reductasas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Anaerobiosis/genética , Daño del ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica , Factores de Transcripción del Factor Regulador X , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo
3.
Eukaryot Cell ; 4(4): 649-60, 2005 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15821125

RESUMEN

The hypoxic genes of Saccharomyces cerevisiae are transcriptionally repressed during aerobic growth through recruitment of the Ssn6/Tup1 general repression complex by the DNA binding protein Rox1. A second DNA binding protein Mot3 enhances repression of some hypoxic genes. Previous studies characterized the role of Mot3 at the hypoxic ANB1 gene as promoting synergy among one Mot3 site and two Rox1 sites comprising operator A of that gene. Here we studied the role of Mot3 in enhancing repression by Rox1 at another hypoxic gene, HEM13, which is less strongly regulated than ANB1 and has a very different arrangement of Rox1 and Mot3 binding sites. By assessing the effects of deleting Rox1 and Mot3 sites individually and in combination, we found that the major repression of HEM13 occurred through three Mot3 sites closely spaced with a single Rox1 site. While the Mot3 sites functioned additively, they enhanced repression by the single Rox1 site, and the presence of Rox1 enhanced the additive effects of the Mot3 sites. In addition, using a Rox1-Ssn6 fusion protein, we demonstrated that Mot3 enhances Rox1 repression through helping recruit the Ssn6/Tup1 complex. Chromatin immunoprecipitation assays indicated that Rox1 stabilized Mot3 binding to DNA. Integrating these results, we were able to devise a set of rules that govern the combinatorial interactions between Rox1 and Mot3 to achieve differential repression.


Asunto(s)
Hipoxia de la Célula , ADN de Hongos/genética , Proteínas de Unión al ADN/metabolismo , Regulación Fúngica de la Expresión Génica , Factores de Iniciación de Péptidos/genética , Proteínas de Unión al ARN/genética , Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Factores de Transcripción/metabolismo , Sitios de Unión , Inmunoprecipitación de Cromatina , Cartilla de ADN , ADN de Hongos/metabolismo , Proteínas de Unión al ADN/genética , Factores de Iniciación de Péptidos/antagonistas & inhibidores , Factores de Iniciación de Péptidos/metabolismo , Proteínas de Unión al ARN/antagonistas & inhibidores , Proteínas de Unión al ARN/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Transcripción Genética , Factor 5A Eucariótico de Iniciación de Traducción
4.
Genetics ; 169(3): 1215-26, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15545648

RESUMEN

The general stress response of yeast involves the induction of approximately 200 genes in response to any one of several stresses. These genes are activated by Msn2 and repressed by the Srb10 kinase, a member of the mediator complex. Normally, Msn2 is exported from the nucleus, and Srb10 represses STRE gene expression. Under stress, Msn2 relocalizes to the nucleus and, with the relief of Srb10 repression, activates transcription. The stress response is rapid, but quickly attenuated. We show here that this attenuation is due to a nuclear-dependent degradation of Msn2. Msn2 rapidly disappeared from cells after heat or osmotic shock. This disappearance was not due to a change in MSN2 RNA levels, which remain constant during stress. Pulse-chase experiments confirmed the stress-dependent Msn2 degradation. The levels of Msn2 were significantly reduced in msn5 deletion cells that have been shown to constitutively retain Msn2 in the nucleus. The degradation was Srb10-dependent; Msn2 was not degraded in an srb10 deletion mutant. An Msn2 internal deletion mutant was insensitive to Srb10 repression, but was degraded by the Srb10-dependent mechanism. Thus, this mutation uncoupled Srb10 repression from degradation.


Asunto(s)
Proteínas de Unión al ADN/genética , Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Quinasa 8 Dependiente de Ciclina , Quinasas Ciclina-Dependientes/metabolismo , Proteínas de Unión al ADN/metabolismo , Regulación Fúngica de la Expresión Génica , Genotipo , Calor , Cinética , Plásmidos , Mapeo Restrictivo , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae , Factores de Transcripción/metabolismo , Transcripción Genética
5.
Eukaryot Cell ; 2(6): 1288-303, 2003 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-14665463

RESUMEN

The Tup1-Ssn6 general repression complex in Saccharomyces cerevisiae represses a wide variety of regulons. Regulon-specific DNA binding proteins recruit the repression complex, and their synthesis, activity, or localization controls the conditions for repression. Rox1 is the hypoxic regulon-specific protein, and a second DNA binding protein, Mot3, augments repression at tightly controlled genes. We addressed the requirements for Tup1-Ssn6 recruitment to two hypoxic genes, ANB1 and HEM13, by using chromatin immunoprecipitation assays. Either Rox1 or Mot3 could recruit Ssn6, but Tup1 recruitment required Ssn6 and Rox1. We also monitored events during derepression. Rox1 and Mot3 dissociated from DNA quickly, accounting for the rapid accumulation of ANB1 and HEM13 RNAs, suggesting a simple explanation for induction. However, Tup1 remained associated with these genes, suggesting that the localization of Tup1-Ssn6 is not the sole determinant of repression. We could not reproduce the observation that deletion of the Tup1-Ssn6-interacting protein Cti6 was required for induction. Finally, Tup1 is capable of repression through a chromatin-dependent mechanism, the positioning of a nucleosome over the TATA box, or a chromatin-independent mechanism. We found that the rate of derepression was independent of the positioned nucleosome and that the TATA binding protein was excluded from ANB1 even in the absence of the positioned nucleosome. The mediator factor Srb7 has been shown to interact with Tup1 and to play a role in repression at several regulons, but we found that significant levels of repression remained in srb7 mutants even when the chromatin-dependent repression mechanism was eliminated. These findings suggest that the repression of different regulons or genes may invoke different mechanisms.


Asunto(s)
Cromatina/química , Genes Fúngicos , Proteínas Nucleares/metabolismo , Regulón , Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Hipoxia de la Célula , Cromatina/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/genética , Pruebas de Precipitina , Estructura Terciaria de Proteína , Proteínas Represoras/química , Proteínas Represoras/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Eliminación de Secuencia , TATA Box , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA