Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Death Differ ; 31(2): 217-238, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38238520

RESUMEN

Selective removal of dysfunctional mitochondria via autophagy is crucial for the maintenance of cellular homeostasis. This event is initiated by the translocation of the E3 ubiquitin ligase Parkin to damaged mitochondria, and it requires the Serine/Threonine-protein kinase PINK1. In a coordinated set of events, PINK1 operates upstream of Parkin in a linear pathway that leads to the phosphorylation of Parkin, Ubiquitin, and Parkin mitochondrial substrates, to promote ubiquitination of outer mitochondrial membrane proteins. Ubiquitin-decorated mitochondria are selectively recruiting autophagy receptors, which are required to terminate the organelle via autophagy. In this work, we show a previously uncharacterized molecular pathway that correlates the activation of the Ca2+-dependent phosphatase Calcineurin to Parkin translocation and Parkin-dependent mitophagy. Calcineurin downregulation or genetic inhibition prevents Parkin translocation to CCCP-treated mitochondria and impairs stress-induced mitophagy, whereas Calcineurin activation promotes Parkin mitochondrial recruitment and basal mitophagy. Calcineurin interacts with Parkin, and promotes Parkin translocation in the absence of PINK1, but requires PINK1 expression to execute mitophagy in MEF cells. Genetic activation of Calcineurin in vivo boosts basal mitophagy in neurons and corrects locomotor dysfunction and mitochondrial respiratory defects of a Drosophila model of impaired mitochondrial functions. Our study identifies Calcineurin as a novel key player in the regulation of Parkin translocation and mitophagy.


Asunto(s)
Calcineurina , Proteínas de Drosophila , Animales , Calcineurina/metabolismo , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Mitofagia/genética , Mitocondrias/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina/metabolismo , Drosophila/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
3.
Cell Death Dis ; 14(12): 805, 2023 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-38062036

RESUMEN

Friedreich ataxia (FRDA) is a rare, inherited neurodegenerative disease caused by an expanded GAA repeat in the first intron of the FXN gene, leading to transcriptional silencing and reduced expression of frataxin. Frataxin participates in the mitochondrial assembly of FeS clusters, redox cofactors of the respiratory complexes I, II and III. To date it is still unclear how frataxin deficiency culminates in the decrease of bioenergetics efficiency in FRDA patients' cells. We previously demonstrated that in healthy cells frataxin is closely attached to the mitochondrial cristae, which contain both the FeS cluster assembly machinery and the respiratory chain complexes, whereas in FRDA patients' cells with impaired respiration the residual frataxin is largely displaced in the matrix. To gain novel insights into the function of frataxin in the mitochondrial pathophysiology, and in the upstream metabolic defects leading to FRDA disease onset and progression, here we explored the potential interaction of frataxin with the FeS cluster-containing respiratory complexes I, II and III. Using healthy cells and different FRDA cellular models we found that frataxin interacts with these three respiratory complexes. Furthermore, by EPR spectroscopy, we observed that in mitochondria from FRDA patients' cells the decreased level of frataxin specifically affects the FeS cluster content of complex I. Remarkably, we also found that the frataxin-like protein Nqo15 from T. thermophilus complex I ameliorates the mitochondrial respiratory phenotype when expressed in FRDA patient's cells. Our data point to a structural and functional interaction of frataxin with complex I and open a perspective to explore therapeutic rationales for FRDA targeted to this respiratory complex.


Asunto(s)
Ataxia de Friedreich , Enfermedades Neurodegenerativas , Humanos , Transporte de Electrón , Ataxia de Friedreich/genética , Ataxia de Friedreich/metabolismo , Proteínas de Unión a Hierro/genética , Proteínas de Unión a Hierro/metabolismo , Membranas Mitocondriales/metabolismo , Enfermedades Neurodegenerativas/metabolismo
4.
Cells ; 12(8)2023 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-37190052

RESUMEN

Stress-induced mitophagy, a tightly regulated process that targets dysfunctional mitochondria for autophagy-dependent degradation, mainly relies on two proteins, PINK1 and Parkin, which genes are mutated in some forms of familiar Parkinson's Disease (PD). Upon mitochondrial damage, the protein kinase PINK1 accumulates on the organelle surface where it controls the recruitment of the E3-ubiquitin ligase Parkin. On mitochondria, Parkin ubiquitinates a subset of mitochondrial-resident proteins located on the outer mitochondrial membrane, leading to the recruitment of downstream cytosolic autophagic adaptors and subsequent autophagosome formation. Importantly, PINK1/Parkin-independent mitophagy pathways also exist that can be counteracted by specific deubiquitinating enzymes (DUBs). Down-regulation of these specific DUBs can presumably enhance basal mitophagy and be beneficial in models in which the accumulation of defective mitochondria is implicated. Among these DUBs, USP8 is an interesting target because of its role in the endosomal pathway and autophagy and its beneficial effects, when inhibited, in models of neurodegeneration. Based on this, we evaluated autophagy and mitophagy levels when USP8 activity is altered. We used genetic approaches in D. melanogaster to measure autophagy and mitophagy in vivo and complementary in vitro approaches to investigate the molecular pathway that regulates mitophagy via USP8. We found an inverse correlation between basal mitophagy and USP8 levels, in that down-regulation of USP8 correlates with increased Parkin-independent mitophagy. These results suggest the existence of a yet uncharacterized mitophagic pathway that is inhibited by USP8.


Asunto(s)
Proteínas de Drosophila , Mitofagia , Animales , Humanos , Mitofagia/genética , Regulación hacia Abajo , Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Quinasas/metabolismo , Encéfalo/metabolismo , Neuronas/metabolismo , Endopeptidasas/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Drosophila/metabolismo
5.
Cell Death Dis ; 13(11): 981, 2022 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-36411275

RESUMEN

Smith-Magenis syndrome (SMS) is a neurodevelopmental disorder characterized by cognitive and behavioral symptoms, obesity, and sleep disturbance, and no therapy has been developed to alleviate its symptoms or delay disease onset. SMS occurs due to haploinsufficiency of the retinoic acid-induced-1 (RAI1) gene caused by either chromosomal deletion (SMS-del) or RAI1 missense/nonsense mutation. The molecular mechanisms underlying SMS are unknown. Here, we generated and characterized primary cells derived from four SMS patients (two with SMS-del and two carrying RAI1 point mutations) and four control subjects to investigate the pathogenetic processes underlying SMS. By combining transcriptomic and lipidomic analyses, we found altered expression of lipid and lysosomal genes, deregulation of lipid metabolism, accumulation of lipid droplets, and blocked autophagic flux. We also found that SMS cells exhibited increased cell death associated with the mitochondrial pathology and the production of reactive oxygen species. Treatment with N-acetylcysteine reduced cell death and lipid accumulation, which suggests a causative link between metabolic dyshomeostasis and cell viability. Our results highlight the pathological processes in human SMS cells involving lipid metabolism, autophagy defects and mitochondrial dysfunction and suggest new potential therapeutic targets for patient treatment.


Asunto(s)
Síndrome de Smith-Magenis , Humanos , Síndrome de Smith-Magenis/diagnóstico , Síndrome de Smith-Magenis/genética , Síndrome de Smith-Magenis/patología , Haploinsuficiencia/genética , Metabolismo de los Lípidos/genética , Factores de Transcripción/metabolismo , Transactivadores/metabolismo , Fenotipo , Autofagia/genética , Tretinoina/farmacología , Tretinoina/metabolismo , Lípidos
6.
Front Cell Dev Biol ; 10: 956394, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36092697

RESUMEN

A significant percentage of the mitochondrial mass is replaced on a daily basis via mechanisms of mitochondrial quality control. Through mitophagy (a selective type of autophagy that promotes mitochondrial proteostasis) cells keep a healthy pool of mitochondria, and prevent oxidative stress and inflammation. Furthermore, mitophagy helps adapting to the metabolic demand of the cells, which changes on a daily basis. Core components of the mitophagy process are PINK1 and Parkin, which mutations are linked to Parkinson's Disease. The crucial role of PINK1/Parkin pathway during stress-induced mitophagy has been extensively studied in vitro in different cell types. However, recent advances in the field allowed discovering that mitophagy seems to be only slightly affected in PINK1 KO mice and flies, putting into question the physiological relevance of this pathway in vivo in the whole organism. Indeed, several cell-specific PINK1/Parkin-independent mitophagy pathways have been recently discovered, which appear to be activated under physiological conditions such as those that promote mitochondrial proteome remodeling during differentiation or in response to specific physiological stimuli. In this Mini Review we want to summarize the recent advances in the field, and add another level of complexity by focusing attention on a potentially important aspect of mitophagy regulation: the implication of the circadian clock. Recent works showed that the circadian clock controls many aspects of mitochondrial physiology, including mitochondrial morphology and dynamic, respiratory activity, and ATP synthesis. Furthermore, one of the essential functions of sleep, which is controlled by the clock, is the clearance of toxic metabolic compounds from the brain, including ROS, via mechanisms of proteostasis. Very little is known about a potential role of the clock in the quality control mechanisms that maintain the mitochondrial repertoire healthy during sleep/wake cycles. More importantly, it remains completely unexplored whether (dys)function of mitochondrial proteostasis feedbacks to the circadian clockwork.

7.
NPJ Parkinsons Dis ; 8(1): 92, 2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35853899

RESUMEN

Leucine-rich repeat kinase 2 (LRRK2) is a kinase involved in different cellular functions, including autophagy, endolysosomal pathways, and immune function. Mutations in LRRK2 cause autosomal-dominant forms of Parkinson's disease (PD). Heterozygous mutations in GBA1, the gene encoding the lysosomal enzyme glucocerebrosidase (GCase), are the most common genetic risk factors for PD. Moreover, GCase function is altered in idiopathic PD and in other genetic forms of the disease. Recent work suggests that LRRK2 kinase activity can regulate GCase function. However, both a positive and a negative correlation have been described. To gain insights into the impact of LRRK2 on GCase, we performed a comprehensive analysis of GCase levels and activity in complementary LRRK2 models, including (i) LRRK2 G2019S knock in (GSKI) mice, (ii) peripheral blood mononuclear cell (PBMCs), plasma, and fibroblasts from PD patients carrying LRRK2 G2019S mutation, (iii) patient iPSCs-derived neurons; (iv) endogenous and overexpressed cell models. In some of these models we found a positive correlation between the activities of LRRK2 and GCase, which was further confirmed in cell lines with genetic and pharmacological manipulation of LRRK2 kinase activity. GCase protein level is reduced in GSKI brain tissues and in G2019S iPSCs-derived neurons, but increased in fibroblasts and PBMCs from patients, suggesting cell-type-specific effects. Overall, our study indicates that LRRK2 kinase activity affects both the levels and the catalytic activity of GCase in a cell-type-specific manner, with important implications in the context of therapeutic application of LRRK2 inhibitors in GBA1-linked and idiopathic PD.

8.
Prog Neurobiol ; 215: 102289, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35636655

RESUMEN

Mitochondrial health is based on a delicate balance of specific mitochondrial functions (e.g. metabolism, signaling, dynamics) that are impaired in neurodegenerative diseases. Rescuing mitochondrial function by selectively targeting mitochondrial stressors, such as reactive oxygen species, inflammation or proteotoxic insults ("bottom-up" approaches) thus is a widely investigated therapeutic strategy. While successful in preclinical studies, these approaches have largely failed to show clear clinical benefits. Promoting the capacity of mitochondria - and other cellular components - to restore a healthy cellular environment is a promising complementary or alternative approach. Herein, we provide a non-technical overview for neurologists and scientists interested in brain metabolism on neuroprotective strategies targeting mitochondria and focus on top-down interventions such as metabolic modulators, exercise, dietary restriction, brain stimulation and conditioning. We highlight general conceptual differences to bottom-up approaches and provide hypotheses on how these mechanistically comparatively poorly characterized top-down therapies may work, discussing notably mitochondrial stress responses and mitohormesis.


Asunto(s)
Mitocondrias , Enfermedades Neurodegenerativas , Ejercicio Físico/fisiología , Humanos , Mitocondrias/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/terapia , Neuroprotección , Especies Reactivas de Oxígeno/metabolismo
9.
Aging Cell ; 20(6): e13379, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34061429

RESUMEN

Increased levels of dysfunctional mitochondria within skeletal muscle are correlated with numerous age-related physiopathological conditions. Improving our understanding of the links between mitochondrial function and muscle proteostasis, and the role played by individual genes and regulatory networks, is essential to develop treatments for these conditions. One potential player is the mitochondrial outer membrane protein Fis1, a crucial fission factor heavily involved in mitochondrial dynamics in yeast but with an unknown role in higher-order organisms. By using Drosophila melanogaster as a model, we explored the effect of Fis1 mutations generated by transposon Minos-mediated integration. Mutants exhibited a higher ratio of damaged mitochondria with age as well as elevated reactive oxygen species levels compared with controls. This caused an increase in oxidative stress, resulting in large accumulations of ubiquitinated proteins, accelerated muscle function decline, and mitochondrial myopathies in young mutant flies. Ectopic expression of Fis1 isoforms was sufficient to suppress this phenotype. Loss of Fis1 led to unbalanced mitochondrial proteostasis within fly muscle, decreasing both flight capabilities and lifespan. Fis1 thus clearly plays a role in fly mitochondrial dynamics. Further investigations into the detailed function of Fis1 are necessary for exploring how mitochondrial function correlates with muscle health during aging.


Asunto(s)
Drosophila melanogaster/genética , Proteínas de la Membrana/metabolismo , Proteínas Mitocondriales/metabolismo , Músculo Esquelético/metabolismo , Proteostasis/genética , Envejecimiento , Animales
10.
Redox Biol ; 37: 101676, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32956978

RESUMEN

UCH-L1 is a deubiquitinating enzyme (DUB), highly abundant in neurons, with a sub-cellular localization dependent on its farnesylation state. Despite UCH-L1's association with familial Parkinson's Disease (PD), the effects on mitochondrial bioenergetics and quality control remain unexplored. Here we investigated the role of UCHL-1 in mitochondrial dynamics and bioenergetics. We demonstrate that knock-down (KD) of UCH-L1 in different cell lines reduces the levels of the mitochondrial fusion protein Mitofusin-2, but not Mitofusin-1, resulting in mitochondrial enlargement and disruption of the tubular network. This was associated with lower tethering between mitochondria and the endoplasmic reticulum, consequently altering mitochondrial calcium uptake. Respiratory function was also altered, as UCH-L1 KD cells displayed higher proton leak and maximum respiratory capacity. Conversely, overexpression of UCH-L1 increased Mfn2 levels, an effect dramatically enhanced by the mutation of the farnesylation site (C220S), which drives UCH-L1 binding to membranes. These data indicate that the soluble cytosolic form of UCH-L1 regulates Mitofusin-2 levels and mitochondrial function. These effects are biologically conserved, since knock-down of the corresponding UCH-L1 ortholog in D. melanogaster reduces levels of the mitofusin ortholog Marf and also increases mitochondrial respiratory capacity. We thus show that Mfn-2 levels are directly affected by UCH-L1, demonstrating that the mitochondrial roles of DUBs go beyond controlling mitophagy rates.


Asunto(s)
Calcio , Drosophila melanogaster , Mitocondrias , Ubiquitina Tiolesterasa , Animales , Transporte Biológico , Calcio/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Retículo Endoplásmico/metabolismo , GTP Fosfohidrolasas , Mitocondrias/genética , Mitocondrias/metabolismo , Ubiquitina Tiolesterasa/metabolismo
11.
Pharmacol Res ; 160: 105097, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32739423

RESUMEN

Mitochondrial autophagy is affected in many diseases. In the past few years, the multiple-steps process of selective degradation of mitochondria has been dissected in details by combining outcomes from different approaches. Perhaps one of the most rigorous methods to clearly visualise mitochondria undergoing autophagic engulfment and degradation, is transmission electron microscopy (TEM). In this opinion paper, we want to give a brief summary of the mitophagic process, and by which means mitophagy can be addressed, including TEM analysis. We will report examples of autophagy and mitophagy-related TEM images, and discuss how to decipher the different steps of the mitophagic process by routine TEM. In our opinion, this technique can be used as a powerful confirmatory approach for mitochondrial autophagy and can provide details of the organelle fate throughout the course of mitophagy with no substantial sample manipulation.


Asunto(s)
Microscopía Electrónica de Transmisión , Mitocondrias/ultraestructura , Mitofagia , Animales , Humanos , Lisosomas/ultraestructura , Factores de Tiempo
12.
Front Physiol ; 11: 535, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32581833

RESUMEN

Mitochondrial dysfunction and neurodegeneration have been directly correlated in many neurodegenerative disorders. Parkinson's disease (PD) in particular has been extensively studied in this context because of its well-characterized association with mitophagy, a selective type of autophagy that degrades mitochondria. Mitophagy is triggered by ubiquitin modification of proteins residing on the surface of mitochondria. Therefore, mitophagy is subject to suppression by deubiquitination. In recent years, many deubiquitinase enzymes (DUBs) emerged as therapeutic targets to compensate hindered mitophagy in PD. It is reasonable that inhibition of specific DUBs should induce mitophagy by blocking deubiquitination of mitochondrial proteins, although the signaling pathway is not always that linear. The broad aspect suggests that there could be cross talks among DUBs, which may in turn have synergistic effect to rescue the disease progression. In this short review we have highlighted DUBs that hold therapeutic value in the field of neurodegenerative diseases, PD in particular.

13.
Cell Metab ; 31(5): 987-1003.e8, 2020 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-32315597

RESUMEN

While endothelial cell (EC) function is influenced by mitochondrial metabolism, the role of mitochondrial dynamics in angiogenesis, the formation of new blood vessels from existing vasculature, is unknown. Here we show that the inner mitochondrial membrane mitochondrial fusion protein optic atrophy 1 (OPA1) is required for angiogenesis. In response to angiogenic stimuli, OPA1 levels rapidly increase to limit nuclear factor kappa-light-chain-enhancer of activated B cell (NFκB) signaling, ultimately allowing angiogenic genes expression and angiogenesis. Endothelial Opa1 is indeed required in an NFκB-dependent pathway essential for developmental and tumor angiogenesis, impacting tumor growth and metastatization. A first-in-class small molecule-specific OPA1 inhibitor confirms that EC Opa1 can be pharmacologically targeted to curtail tumor growth. Our data identify Opa1 as a crucial component of physiological and tumor angiogenesis.


Asunto(s)
GTP Fosfohidrolasas/metabolismo , Mitocondrias/metabolismo , Neoplasias/metabolismo , Neovascularización Patológica/metabolismo , Animales , Células Cultivadas , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , FN-kappa B/metabolismo , Transducción de Señal , Pez Cebra
14.
Cell Calcium ; 87: 102186, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32120195

RESUMEN

The outer mitochondrial membrane protein VDAC interacts with the ER protein IP3R via chaperone Grp75 to form a molecular complex that couples mitochondria to the ER and contributes to functional mitochondria-ER contacts (MERCs), essential for efficient calcium (Ca2+) transfer. A new study by Liu et al. identifies the PD protein DJ-1 as a component of the IP3R-Grp75-VDAC complex. DJ-1 ablation impairs mitochondria-ER association and Ca2+ crosstalk, and impacts the stability of the trio.


Asunto(s)
Retículo Endoplásmico/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Proteína Desglicasa DJ-1/metabolismo , Humanos , Unión Proteica , Canal Aniónico 1 Dependiente del Voltaje/metabolismo
15.
Oxid Med Cell Longev ; 2019: 4246350, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31871549

RESUMEN

Dysregulations of mitochondria with alterations in trafficking and morphology of these organelles have been related to Parkinson's disease (PD), a neurodegenerative disorder characterized by brain accumulation of Lewy bodies (LB), intraneuronal inclusions mainly composed of α-synuclein (α-syn) fibrils. Experimental evidence supports that α-syn pathological aggregation can negatively impinge on mitochondrial functions suggesting that this protein may be crucially involved in the control of mitochondrial homeostasis. The aim of this study was to assay this hypothesis by analyzing mitochondrial function and morphology in primary cortical neurons from C57BL/6JOlaHsd α-syn null and C57BL/6J wild-type (wt) mice. Primary cortical neurons from mice lacking α-syn showed decreased respiration capacity measured with a Seahorse XFe24 Extracellular Flux Analyzer. In addition, morphological Airyscan superresolution microscopy showed the presence of fragmented mitochondria while real-time PCR and western blot confirmed altered expression of proteins involved in mitochondrial shape modifications in the primary cortical neurons of α-syn null mice. Transmission electron microscopy (TEM) studies showed that α-syn null neurons exhibited impaired mitochondria-endoplasmic reticulum (ER) physical interaction. Specifically, we identified a decreased number of mitochondria-ER contacts (MERCs) paralleled by a significant increase in ER-mitochondria distance (i.e., MERC length). These findings support that α-syn physiologically preserves mitochondrial functions and homeostasis. Studying α-syn/mitochondria interplay in health and disease is thus pivotal for understanding their involvement in PD and other LB disorders.


Asunto(s)
Neuronas/metabolismo , alfa-Sinucleína/metabolismo , Animales , Western Blotting , Células Cultivadas , Cuerpos de Lewy/metabolismo , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica de Transmisión , Mitocondrias/metabolismo , Dinámicas Mitocondriales , Neuronas/citología , alfa-Sinucleína/genética
16.
Cell Rep ; 27(5): 1541-1550.e5, 2019 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-31042479

RESUMEN

Mitochondrial Ca2+ uptake is an important mediator of metabolism and cell death. Identification of components of the highly conserved mitochondrial Ca2+ uniporter has opened it up to genetic analysis in model organisms. Here, we report a comprehensive genetic characterization of all known uniporter components conserved in Drosophila. While loss of pore-forming MCU or EMRE abolishes fast mitochondrial Ca2+ uptake, this results in only mild phenotypes when young, despite shortened lifespans. In contrast, loss of the MICU1 gatekeeper is developmentally lethal, consistent with unregulated Ca2+ uptake. Mutants for the neuronally restricted regulator MICU3 are viable with mild neurological impairment. Genetic interaction analyses reveal that MICU1 and MICU3 are not functionally interchangeable. More surprisingly, loss of MCU or EMRE does not suppress MICU1 mutant lethality, suggesting that this results from uniporter-independent functions. Our data reveal the interplay among components of the mitochondrial Ca2+ uniporter and shed light on their physiological requirements in vivo.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Proteínas de Transporte de Catión/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Mutación , Animales , Calcio/metabolismo , Proteínas de Unión al Calcio/genética , Proteínas de Transporte de Catión/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/genética , Fenotipo
17.
Life Sci Alliance ; 2(2)2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30988163

RESUMEN

Aberrant mitochondrial dynamics disrupts mitochondrial function and contributes to disease conditions. A targeted RNA interference screen for deubiquitinating enzymes (DUBs) affecting protein levels of multifunctional mitochondrial fusion protein Mitofusin (MFN) identified USP8 prominently influencing MFN levels. Genetic and pharmacological inhibition of USP8 normalized the elevated MFN protein levels observed in PINK1 and Parkin-deficient models. This correlated with improved mitochondrial function, locomotor performance and life span, and prevented dopaminergic neurons loss in Drosophila PINK1 KO flies. We identified a novel target antagonizing pathologically elevated MFN levels, mitochondrial dysfunction, and dopaminergic neuron loss of a Drosophila model of mitochondrial dysfunction.


Asunto(s)
Proteínas de Drosophila/antagonistas & inhibidores , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimología , Proteínas de la Membrana/metabolismo , Mitocondrias/enzimología , Proteínas Serina-Treonina Quinasas/genética , Ubiquitina-Proteína Ligasas/genética , Proteasas Ubiquitina-Específicas/antagonistas & inhibidores , Proteasas Ubiquitina-Específicas/metabolismo , Animales , Línea Celular , Dimetilsulfóxido/farmacología , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Regulación hacia Abajo/genética , Drosophila , Drosophila melanogaster/embriología , Silenciador del Gen , Longevidad , Masculino , Mitocondrias/patología , Enfermedad de Parkinson/metabolismo , Fenotipo , Transducción de Señal/efectos de los fármacos , Transfección , Proteasas Ubiquitina-Específicas/genética
18.
EMBO Mol Med ; 10(11)2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30249595

RESUMEN

Mitochondrial autophagy or mitophagy is a key process that allows selective sequestration and degradation of dysfunctional mitochondria to prevent excessive reactive oxygen species, and activation of cell death. Recent studies revealed that ubiquitin-proteasome complex activity and mitochondrial membrane rupture are key steps preceding mitophagy, in combination with the ubiquitination of specific outer mitochondrial membrane (OMM) proteins. The deubiquitinating enzyme ubiquitin-specific peptidase 14 (USP14) has been shown to modulate both proteasome activity and autophagy. Here, we report that genetic and pharmacological inhibition of USP14 promotes mitophagy, which occurs in the absence of the well-characterised mediators of mitophagy, PINK1 and Parkin. Critical to USP14-induced mitophagy is the exposure of the LC3 receptor Prohibitin 2 by mitochondrial fragmentation and mitochondrial membrane rupture. Genetic or pharmacological inhibition of USP14 in vivo corrected mitochondrial dysfunction and locomotion behaviour of PINK1/Parkin mutant Drosophila model of Parkinson's disease, an age-related progressive neurodegenerative disorder that is correlated with diminished mitochondrial quality control. Our study identifies a novel therapeutic target that ameliorates mitochondrial dysfunction and in vivo PD-related symptoms.


Asunto(s)
Proteínas de Drosophila/metabolismo , Mitofagia , Modelos Biológicos , Ubiquitina Tiolesterasa/antagonistas & inhibidores , Ubiquitina Tiolesterasa/metabolismo , Animales , Autofagosomas/metabolismo , Autofagosomas/ultraestructura , Línea Celular Tumoral , Respiración de la Célula , Drosophila , Técnicas de Silenciamiento del Gen , Humanos , Lisosomas/metabolismo , Lisosomas/ultraestructura , Masculino , Ratones , Persona de Mediana Edad , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Actividad Motora
19.
Pharmacol Res ; 138: 43-56, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30219582

RESUMEN

Parkin, an E3 ubiquitin ligase and a Parkinson's disease (PD) related gene, translocates to impaired mitochondria and drives their elimination via autophagy, a process known as mitophagy. Mitochondrial pro-fusion protein Mitofusins (Mfn1 and Mfn2) were found to be a target for Parkin mediated ubiquitination. Mfns are transmembrane GTPase embedded in the outer membrane of mitochondria, which are required on adjacent mitochondria to mediate fusion. In mammals, Mfn2 also forms complexes that are capable of tethering mitochondria to endoplasmic reticulum (ER), a structural feature essential for mitochondrial energy metabolism, calcium (Ca2+) transfer between the organelles and Ca2+ dependent cell death. Despite its fundamental physiological role, the molecular mechanisms that control ER-mitochondria cross talk are obscure. Ubiquitination has recently emerged as a powerful tool to modulate protein function, via regulation of protein subcellular localization and protein ability to interact with other proteins. Ubiquitination is also a reversible mechanism, which can be actively controlled by opposing ubiquitination-deubiquitination events. In this work we found that in Parkin deficient cells and parkin mutant human fibroblasts, the tether between ER and mitochondria is decreased. We identified the site of Parkin dependent ubiquitination and showed that the non-ubiquitinatable Mfn2 mutant fails to restore ER-mitochondria physical and functional interaction. Finally, we took advantage of an established in vivo model of PD to demonstrate that manipulation of ER-mitochondria tethering by expressing an ER-mitochondria synthetic linker is sufficient to rescue the locomotor deficit associated to an in vivo Drosophila model of PD.


Asunto(s)
Retículo Endoplásmico/fisiología , GTP Fosfohidrolasas/fisiología , Mitocondrias/fisiología , Proteínas Mitocondriales/fisiología , Enfermedad de Parkinson/fisiopatología , Ubiquitina-Proteína Ligasas/fisiología , Animales , Drosophila , Femenino , Fibroblastos/metabolismo , Células HEK293 , Humanos , Masculino , Ratones , Persona de Mediana Edad , Interferencia de ARN , ARN Interferente Pequeño/genética , Ubiquitinación
20.
Oncotarget ; 9(16): 12550-12551, 2018 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-29560088
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...