Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Arch Pharm (Weinheim) ; : e2400071, 2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38736025

RESUMEN

Dopamine D2-like receptors, especially D2 and D3 receptor subtypes, are important targets of antipsychotic agents. Many of these antipsychotics share an aliphatic linker element between a protonable amine group and an acyl-like moiety. Here, we have modified this aliphatic linker into phenylmethyl and phenylethyl linkers substituted in different positions. The design, synthesis, and in vitro evaluation of 18 dopamine D2 and D3 receptor ligands were performed in this study. Using a radioligand displacement assay, all ligands were found to have modest nanomolar affinity to D2R and D3R. N-(4-{2-[4-(2-Methoxyphenyl)piperazin-1-yl]ethyl}phenyl)acetamide (6c) demonstrates the highest D3R and D2R affinity values (pKi values of 7.83 [D2R] and 8.04 [D3R]), featuring a slight preference to D3R. This derivative can be taken as a reference structure for the development of a new class of D2R and D3R ligands.

2.
Eur J Cell Biol ; 102(3): 151337, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37392580

RESUMEN

Different studies corroborate a role for ceramide synthases and their downstream products, ceramides, in modulation of apoptosis and autophagy in the context of cancer. These mechanisms of regulation, however, appear to be context dependent in terms of ceramides' fatty acid chain length, subcellular localization, and the presence or absence of their downstream targets. Our current understanding of the role of ceramide synthases and ceramides in regulation of apoptosis and autophagy could be harnessed to pioneer the development of new treatments to activate or inhibit a single type of ceramide synthase, thereby regulating the apoptosis induction or cross talk of apoptosis and autophagy in cancer cells. Moreover, the apoptotic function of ceramide suggests that ceramide analogues can pave the way for the development of novel cancer treatments. Therefore, in the current review paper we discuss the impact of ceramide synthases and ceramides in regulation of apoptosis and autophagy in context of different types of cancers. We also briefly introduce the latest information on ceramide synthase inhibitors, their application in diseases including cancer therapy, and discuss approaches for drug discovery in the field of ceramide synthase inhibitors. We finally discussed strategies for developing strategies to use lipids and ceramides analysis in biological fluids for developing early biomarkers for cancer.


Asunto(s)
Ceramidas , Neoplasias , Humanos , Ceramidas/farmacología , Apoptosis , Autofagia
3.
Chem Biol Interact ; 381: 110542, 2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37224992

RESUMEN

A library of 43 thiazole derivatives, including 31 previously and 12 newly synthesized in the present study, was evaluated in vitro for their inhibitory properties against bovine pancreatic DNase I. Nine compounds (including three newly synthesized) inhibited the enzyme showing improved inhibitory properties compared to that of the reference crystal violet (IC50 = 346.39 µM). Two compounds (5 and 29) stood out as the most potent DNase I inhibitors, with IC50 values below 100 µM. The 5-LO inhibitory properties of the investigated derivatives were also analyzed due to the importance of this enzyme in the development of neurodegenerative diseases. Compounds (12 and 29) proved to be the most prominent new 5-LO inhibitors, with IC50 values of 60 nM and 56 nM, respectively, in cell-free assay. Four compounds, including one previously (41) and three newly (12, 29 and 30) synthesized, have the ability to inhibit DNase I with IC50 values below 200 µM and 5-LO with IC50 values below 150 nM in cell-free assay. Molecular docking and molecular dynamics simulations were used to clarify DNase I and 5-LO inhibitory properties of the most potent representatives at the molecular level. The newly synthesized compound 29 (4-((4-(3-bromo-4-morpholinophenyl)thiazol-2-yl)amino)phenol) represents the most promising dual DNase I and 5-LO inhibitor, as it inhibited 5-LO in the nanomolar and DNase I in the double-digit micromolar concentration ranges. The results obtained in the present study, together with our recently published results for 4-(4-chlorophenyl)thiazol-2-amines, represent a good basis for the development of new neuroprotective therapeutics based on dual inhibition of DNase I and 5-LO.


Asunto(s)
Fármacos Neuroprotectores , Tiazoles , Animales , Bovinos , Relación Estructura-Actividad , Tiazoles/farmacología , Tiazoles/química , Simulación del Acoplamiento Molecular , Fármacos Neuroprotectores/farmacología , Araquidonato 5-Lipooxigenasa , Desoxirribonucleasa I , Inhibidores de la Lipooxigenasa/farmacología , Estructura Molecular
4.
Cancer Discov ; 13(2): 454-473, 2023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-36331284

RESUMEN

Lysosomal autophagy inhibition (LAI) with hydroxychloroquine or DC661 can enhance cancer therapy, but tumor regrowth is common. To elucidate LAI resistance, proteomics and immunoblotting demonstrated that LAI induced lipid metabolism enzymes in multiple cancer cell lines. Lipidomics showed that LAI increased cholesterol, sphingolipids, and glycosphingolipids. These changes were associated with striking levels of GM1+ membrane microdomains (GMM) in plasma membranes and lysosomes. Inhibition of cholesterol/sphingolipid metabolism proteins enhanced LAI cytotoxicity. Targeting UDP-glucose ceramide glucosyltransferase (UGCG) synergistically augmented LAI cytotoxicity. Although UGCG inhibition decreased LAI-induced GMM and augmented cell death, UGCG overexpression led to LAI resistance. Melanoma patients with high UGCG expression had significantly shorter disease-specific survival. The FDA-approved UGCG inhibitor eliglustat combined with LAI significantly inhibited tumor growth and improved survival in syngeneic tumors and a therapy-resistant patient-derived xenograft. These findings nominate UGCG as a new cancer target, and clinical trials testing UGCG inhibition in combination with LAI are warranted. SIGNIFICANCE: We discovered UGCG-dependent lipid remodeling drives resistance to LAI. Targeting UGCG with a drug approved for a lysosomal storage disorder enhanced LAI antitumor activity without toxicity. LAI and UGCG inhibition could be tested clinically in multiple cancers. This article is highlighted in the In This Issue feature, p. 247.


Asunto(s)
Neoplasias , Humanos , Autofagia , Lisosomas , Colesterol
5.
Leukemia ; 36(7): 1907-1915, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35513703

RESUMEN

Allogeneic hematopoietic cell transplantation (allo-HCT) is an effective immunotherapy for various hematologic malignancies, predominantly through potent graft-versus-leukemia (GVL) effect. However, the mortality after allo-HCT is because of relapse of primary malignancy and followed by graft-vs-host-disease (GVHD) as a major cause of transplant-related mortality. Hence, strategies to limit GVHD while preserving the GVL effect are highly desirable. Ceramide, which serves a central role in sphingolipid metabolism, is generated by ceramide synthases (CerS1-6). In this study, we found that genetic or pharmacologic targeting of CerS6 prevented and reversed chronic GVHD (cGVHD). Furthermore, specific inhibition of CerS6 with ST1072 significantly ameliorated acute GVHD (aGVHD) while preserving the GVL effect, which differed from FTY720 that attenuated aGVHD but impaired GVL activity. At the cellular level, blockade of CerS6 restrained donor T cells from migrating into GVHD target organs and preferentially reduced activation of donor CD4 T cells. At the molecular level, CerS6 was required for optimal TCR signaling, CD3/PKCθ co-localization, and subsequent N-RAS activation and ERK signaling, especially on CD4+ T cells. The current study provides rationale and means for targeting CerS6 to control GVHD and leukemia relapse, which would enhance the efficacy of allo-HCT as an immunotherapy for hematologic malignancies in the clinic.


Asunto(s)
Enfermedad Injerto contra Huésped , Neoplasias Hematológicas , Trasplante de Células Madre Hematopoyéticas , Leucemia , Ceramidas/farmacología , GTP Fosfohidrolasas/metabolismo , Enfermedad Injerto contra Huésped/prevención & control , Efecto Injerto vs Leucemia , Neoplasias Hematológicas/terapia , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Humanos , Sistema de Señalización de MAP Quinasas , Proteínas de la Membrana/metabolismo , Oxidorreductasas , Recurrencia , Linfocitos T , Trasplante Homólogo
6.
Cancer Res ; 82(8): 1617-1632, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35425959

RESUMEN

An altered lipidome in tumors may affect not only tumor cells themselves but also their microenvironment. In this study, a lipidomics screen reveals increased amounts of phosphatidylserine (PS), particularly ether-PS (ePS), in murine mammary tumors compared with normal tissue. PS was produced by phosphatidylserine synthase 1 (PTDSS1), and depletion of Ptdss1 from tumor cells in mice reduced ePS levels accompanied by stunted tumor growth and decreased tumor-associated macrophage (TAM) abundance. Ptdss1-deficient tumor cells exposed less PS during apoptosis, which was recognized by the PS receptor MERTK. Mammary tumors in macrophage-specific Mertk-/- mice showed similarly suppressed growth and reduced TAM infiltration. Transcriptomic profiles of TAMs from Ptdss1-knockdown tumors and Mertk-/- TAMs revealed that macrophage proliferation was reduced when the Ptdss1/Mertk pathway was targeted. Moreover, PTDSS1 expression correlated positively with TAM abundance but negatively with breast carcinoma patient survival. PTDSS1 thus may be a target to modify tumor-promoting inflammation. SIGNIFICANCE: This study shows that inhibiting the production of ether-phosphatidylserine by targeting phosphatidylserine synthase PTDSS1 limits tumor-associated macrophage expansion and breast tumor growth.


Asunto(s)
Lipidómica , Neoplasias , Animales , CDPdiacilglicerol-Serina O-Fosfatidiltransferasa , Éter , Humanos , Inflamación/metabolismo , Ratones , Neoplasias/metabolismo , Fosfatidilserinas/metabolismo , Microambiente Tumoral , Tirosina Quinasa c-Mer/metabolismo
7.
Bioorg Med Chem Lett ; 59: 128573, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35063632

RESUMEN

Dopamine is one of the crucial neurotransmitters in the human brain. Its out-of-range concentration can lead to various neurological diseases with special interest for dopamine D2 and D3 receptor subtypes. Although BODIPY is a highly versatile structural moiety for fluorescence labeling, we have looked out for structurally related pyridine-based moieties. We used BOPPY labelling of well-described D2R/D3R pharmacophores to obtain ligands with moderate to low nanomolar binding affinities as well as low to excellent quantum yields for bright fluorescence ligands. To best of our knowledge, this is the first report on the application of BOPPY fluorophores to GPCR ligands. This approach offers a general applicable way for fluorescence labelling via primary aliphatic amine elements.


Asunto(s)
Aminas/química , Colorantes Fluorescentes/química , Receptores de Dopamina D2/química , Receptores de Dopamina D3/química , Humanos , Ligandos , Estructura Molecular
8.
ChemMedChem ; 17(5): e202100694, 2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-34994078

RESUMEN

A library of 31 butyrylcholinesterase (BChE) and cathepsin B (CatB) inhibitors was screened in vitro for inhibition of deoxyribonuclease I (DNase I). Compounds 22, 8 and 7 are among the most potent synthetic non-peptide DNase I inhibitors reported to date. Three 8-hydroxyquinoline analogues inhibited both DNase I and BChE with IC50 values below 35 µM and 50 nM, respectively, while two nitroxoline derivatives inhibited DNase I and Cat B endopeptidase activity with IC50 values below 60 and 20 µM. Selected derivatives were screened for various co-target binding affinities at dopamine D2 and D3 , histamine H3 and H4 receptors and inhibition of 5-lipoxygenase. Compound 8 bound to the H3 receptor and is highlighted as the most promising multifunctional ligand with a favorable pharmacokinetic profile and one of the most potent non-peptide DNase I inhibitors. The present study demonstrates that 8-hydroxyquinoline is a structural fragment critical for DNase I inhibition in the presented series of compounds.


Asunto(s)
Butirilcolinesterasa , Catepsina B , Acetilcolinesterasa/metabolismo , Butirilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/química , Inhibidores de la Colinesterasa/farmacología , Desoxirribonucleasa I/química , Desoxirribonucleasa I/farmacología , Ligandos , Simulación del Acoplamiento Molecular , Oxiquinolina , Relación Estructura-Actividad
9.
Bioorg Chem ; 117: 105411, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34653944

RESUMEN

During the past decades, histamine H3 receptors have received widespread attention in pharmaceutical research due to their involvement in pathophysiology of several diseases such as neurodegenerative disorders. In this context, blocking of these receptors is of paramount importance in progression of such diseases. In the current investigation, novel histamine H3 receptor ligands were designed by exploiting scaffold-hopping drug-design strategy. We inspected the designed molecules in terms of ADME properties, drug-likeness, as well as toxicity profiles. Additionally molecular docking and dynamics simulation studies were performed to predict binding mode and binding free energy calculations, respectively. Among the designed structures, we selected compound d2 and its demethylated derivative as examples for synthesis and affinity measurement. In vitro binding assays of the synthesized molecules demonstrated that d2 has lower binding affinity (Ki = 2.61 µM) in radioligand displacement assay to hH3R than that of demethylated form (Ki = 12.53 µM). The newly designed compounds avoid of any toxicity predictors resulted from extended in silico and experimental studies, can offer another scaffold for histamine H3R antagonists for further structure-activity relationship studies.


Asunto(s)
Diseño de Fármacos , Histamínicos/química , Histamínicos/farmacología , Receptores Histamínicos H3/metabolismo , Descubrimiento de Drogas , Agonistas de los Receptores Histamínicos/química , Agonistas de los Receptores Histamínicos/farmacología , Antagonistas de los Receptores Histamínicos/química , Antagonistas de los Receptores Histamínicos/farmacología , Humanos , Ligandos , Modelos Moleculares
10.
Bioorg Med Chem ; 50: 116462, 2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34695709

RESUMEN

Alzheimers disease (AD) is the most prominent neurodegenerative disorder with high medical need. Protein-protein-interactions (PPI) interactions have a critical role in AD where ß-amyloid structures (Aß) build toxic oligomers. Design of disease modifying multi target directed ligand (MTDL) has been performed, which disable PPI on the one hand and on the other hand, act as procognitive antagonists at the histamine H3 receptor (H3R). The synthetized compounds are structurally based on peptidomimetic amino acid-like structures mainly as keto, diketo-, or acyl variations of a piperazine moiety connected to an H3R pharmacophore. Most of them showed low nanomolar affinities at H3R and some with promising affinity to Aß-monomers. The structure-activity relationships (SAR) described offer new possibilities for MTDL with an optimized profile combining symptomatic and potential causal therapeutic approaches in AD.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides/antagonistas & inhibidores , Antagonistas de los Receptores Histamínicos H3/farmacología , Peptidomiméticos/farmacología , Piperazina/farmacología , Receptores Histamínicos H3/metabolismo , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Relación Dosis-Respuesta a Droga , Antagonistas de los Receptores Histamínicos H3/síntesis química , Antagonistas de los Receptores Histamínicos H3/química , Humanos , Estructura Molecular , Peptidomiméticos/síntesis química , Peptidomiméticos/química , Piperazina/síntesis química , Piperazina/química , Relación Estructura-Actividad
11.
Molecules ; 26(17)2021 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-34500564

RESUMEN

Sphingosine 1-phosphate (S1P) is an extensively studied signaling molecule that contributes to cell proliferation, survival, migration and other functions through binding to specific S1P receptors. The cycle of S1P1 internalization upon S1P binding and recycling to the cell surface when local S1P concentrations are low drives T cell trafficking. S1P1 modulators, such as fingolimod, disrupt this recycling by inducing persistent S1P1 internalization and receptor degradation, which results in blocked egress of T cells from the secondary lymphoid tissues. The approval of these compounds for the treatment of multiple sclerosis has placed the development of S1PR modulators in the focus of pharmacological research, mostly for autoimmune indications. Here, we report on a novel anellated bismorpholino derivative of oxy-fingolimod, named ST-2191, which exerts selective S1P1 agonist and functional antagonist potency. ST-2191 is also effective in reducing the lymphocyte number in mice, and this effect is not dependent on phosphorylation by sphingosine kinase 2 for activity. These data show that ST-2191 is a novel S1P1 modulator, but further experiments are needed to analyze the therapeutic impact of ST-2191 in animal models of autoimmune diseases.


Asunto(s)
Clorhidrato de Fingolimod/farmacología , Lisofosfolípidos/agonistas , Lisofosfolípidos/antagonistas & inhibidores , Esfingosina/análogos & derivados , Animales , Células CHO , Cricetulus , Humanos , Recuento de Linfocitos/métodos , Lisofosfolípidos/metabolismo , Ratones , Ratones Endogámicos C57BL , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Receptores de Lisoesfingolípidos/metabolismo , Transducción de Señal/efectos de los fármacos , Esfingosina/agonistas , Esfingosina/antagonistas & inhibidores , Esfingosina/metabolismo , Linfocitos T/metabolismo
12.
Arch Pharm (Weinheim) ; 354(6): e2000486, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33615541

RESUMEN

Dopamine is an important neurotransmitter in the human brain and its altered concentrations can lead to various neurological diseases. We studied the binding of novel compounds at the dopamine D2 (D2 R) and D3 (D3 R) receptor subtypes, which belong to the D2 -like receptor family. The synthesis, in silico, and in vitro characterization of 10 dopamine receptor ligands were performed. Novel ligands were docked into the D2 R and D3 R crystal structures to examine the precise binding mode. A quantum mechanics/molecular mechanics study was performed to gain insights into the nature of the intermolecular interactions between the newly introduced pentafluorosulfanyl (SF5 ) moiety and D2 R and D3 R. A radioligand displacement assay determined that all of the ligands showed moderate-to-low nanomolar affinities at D2 R and D3 R, with a slight preference for D3 R, which was confirmed in the in silico studies. N-{4-[4-(2-Methoxyphenyl)piperazin-1-yl]butyl}-4-(pentafluoro-λ6-sulfanyl)benzamide (7i) showed the highest D3 R affinity and selectivity (pKi values of 7.14 [D2 R] and 8.42 [D3 R]).


Asunto(s)
Benzamidas , Antagonistas de Dopamina , Dopamina/metabolismo , Ligandos , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D3/metabolismo , Benzamidas/síntesis química , Benzamidas/química , Benzamidas/farmacología , Unión Competitiva , Antagonistas de Dopamina/síntesis química , Antagonistas de Dopamina/química , Antagonistas de Dopamina/farmacología , Humanos , Enfermedades del Sistema Nervioso/tratamiento farmacológico , Enfermedades del Sistema Nervioso/metabolismo , Unión Proteica , Ensayo de Unión Radioligante , Relación Estructura-Actividad
13.
Neuropharmacology ; 186: 108464, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33460688

RESUMEN

The sphingosine 1-phosphate (S1P) receptor 1 (S1P1) has emerged as a therapeutic target for the treatment of multiple sclerosis (MS). Fingolimod (FTY720) is the first functional antagonist of S1P1 that has been approved for oral treatment of MS. Previously, we have developed novel butterfly derivatives of FTY720 that acted similar to FTY720 in reducing disease symptoms in a mouse model of experimental autoimmune encephalomyelitis (EAE). In this study, we have synthesized a piperidine derivative of the oxazolo-oxazole compounds, denoted ST-1505, and its ring-opened analogue ST-1478, and characterised their in-vitro and in-vivo functions. Notably, the 3-piperidinopropyloxy moiety resembles a structural motif of pitolisant, a drug with histamine H3R antagonistic/inverse agonist activity approved for the treatment of narcolepsy. Both novel compounds exerted H3R affinities, and in addition, ST-1505 was characterised as a dual S1P1+3 agonist, whereas ST-1478 was a dual S1P1+5 agonist. Both multitargeting compounds were also active in mice and reduced the lymphocyte numbers as well as diminished disease symptoms in the mouse model of MS. The effect of ST-1478 was dependent on SK-2 activity suggesting that it is a prodrug like FTY720, but with a more selective S1P receptor activation profile, whereas ST-1505 is a fully active drug even in the absence of SK-2. In summary, these data suggest that the well soluble piperidine derivatives ST-1505 and ST-1478 hold promise as novel drugs for the treatment of MS and other autoimmune or inflammatory diseases, and by their H3R antagonist potency, they might additionally improve cognitive impairment during disease.


Asunto(s)
Encefalomielitis Autoinmune Experimental/prevención & control , Clorhidrato de Fingolimod/administración & dosificación , Antagonistas de los Receptores Histamínicos H3/administración & dosificación , Esclerosis Múltiple/prevención & control , Fármacos Neuroprotectores/administración & dosificación , Receptores de Esfingosina-1-Fosfato/agonistas , Animales , Células CHO , Cricetinae , Cricetulus , Encefalomielitis Autoinmune Experimental/metabolismo , Femenino , Clorhidrato de Fingolimod/análogos & derivados , Clorhidrato de Fingolimod/química , Antagonistas de los Receptores Histamínicos H3/química , Antagonistas de los Receptores Histamínicos H3/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Esclerosis Múltiple/metabolismo , Fármacos Neuroprotectores/química , Estructura Secundaria de Proteína , Receptores de Esfingosina-1-Fosfato/metabolismo
14.
Int J Mol Sci ; 21(18)2020 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-32899717

RESUMEN

Multiple sclerosis (MS) is a chronic, inflammatory, autoimmune disease of the central nervous system (CNS) which is associated with lower life expectancy and disability. The experimental antigen-induced encephalomyelitis (EAE) in mice is a useful animal model of MS, which allows exploring the etiopathogenetic mechanisms and testing novel potential therapeutic drugs. A new therapeutic paradigm for the treatment of MS was introduced in 2010 through the sphingosine 1-phosphate (S1P) analogue fingolimod (FTY720, Gilenya®), which acts as a functional S1P1 antagonist on T lymphocytes to deplete these cells from the blood. In this study, we synthesized two novel structures, ST-1893 and ST-1894, which are derived from fingolimod and chemically feature a morpholine ring in the polar head group. These compounds showed a selective S1P1 activation profile and a sustained S1P1 internalization in cultures of S1P1-overexpressing Chinese hamster ovary (CHO)-K1 cells, consistent with a functional antagonism. In vivo, both compounds induced a profound lymphopenia in mice. Finally, these substances showed efficacy in the EAE model, where they reduced clinical symptoms of the disease, and, on the molecular level, they reduced the T-cell infiltration and several inflammatory mediators in the brain and spinal cord. In summary, these data suggest that S1P1-selective compounds may have an advantage over fingolimod and siponimod, not only in MS but also in other autoimmune diseases.


Asunto(s)
Encefalomielitis Autoinmune Experimental/metabolismo , Clorhidrato de Fingolimod/farmacología , Morfolinos/farmacología , Animales , Células CHO , Sistema Nervioso Central/efectos de los fármacos , Cricetulus , Modelos Animales de Enfermedad , Encefalomielitis/tratamiento farmacológico , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Clorhidrato de Fingolimod/análogos & derivados , Inmunosupresores/uso terapéutico , Ligandos , Linfopenia/tratamiento farmacológico , Lisofosfolípidos/metabolismo , Ratones , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/metabolismo , Receptores de Lisoesfingolípidos/metabolismo , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Receptores de Esfingosina-1-Fosfato/efectos de los fármacos , Receptores de Esfingosina-1-Fosfato/metabolismo , Médula Espinal/efectos de los fármacos , Linfocitos T/efectos de los fármacos
15.
Eur J Med Chem ; 191: 112150, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32105981

RESUMEN

Since the discovery and early characterization of the histamine H3 receptor (H3R) in the 1980's, predominantly imidazole-based agonists were presented to the scientific community such as Nα-methylhistamine (Nα-MeHA) or (R)-α-methylhistamine ((R)α-MeHA). Whereas therapeutic applications have been prompted for H3R agonists such as treatment of pain, asthma and obesity, several drawbacks associated with imidazole-containing ligands makes the search for new agonists for this receptor demanding. Accordingly, high interest arose after publication of several pyrrolidindione-based, highly affine H3R agonists within this journal that avoid the imidazole moiety and thus, presenting a novel type of potential pharmacophores (Ghoshal, Anirban et al., 2018). In our present study performed in two independent laboratories, we further evaluated the exposed lead-compound (EC50 = 0.1 nM) of the previous research project with regards to pharmacological behavior at H3R. Thereby, no binding affinity was observed in neither [3H]Nα-MeHA nor bodilisant displacement assays that contradicts the previously published activity. Additional functional exploration employing GTPγ[35S], cAMP-accumulation assay and cAMP response element (CRE)-driven reporter gene assays exhibited slight partial agonist properties of such pyrrolidindiones but acting apart from the reported concentration range. We conclude, that the previously reported actions of such pyrrolidindiones result from an overestimation based on the method of measurement and thus, we cast doubt on the new pharmacophores with H3R agonist activity.


Asunto(s)
Pirrolidinonas/farmacología , Receptores Histamínicos H3/metabolismo , Relación Dosis-Respuesta a Droga , Polarización de Fluorescencia , Células HEK293 , Humanos , Estructura Molecular , Unión Proteica/efectos de los fármacos , Pirrolidinonas/síntesis química , Pirrolidinonas/química , Relación Estructura-Actividad
16.
Bioorg Chem ; 95: 103528, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31918397

RESUMEN

Eleven new 4-(4-chlorophenyl)thiazol-2-amines were synthesized and, together with nine known derivatives, evaluated in vitro for inhibitory properties towards bovine pancreatic DNase I. Three compounds (18-20) inhibited DNase I with IC50 values below 100 µM, with compound 19 being the most potent (IC50 = 79.79 µM). Crystal violet, used as a positive control in the absence of a "golden standard", exhibited almost 5-fold weaker DNase I inhibition. Pharma/E-State RQSAR models clarified critical structural fragments relevant for DNase I inhibition. Molecular docking and molecular dynamics simulation defined the 4-(4-chlorophenyl)thiazol-2-amines interactions with the most important catalytic residues of DNase I. Ligand-based pharmacophore modeling and virtual screening confirmed the chemical features of 4-(4-chlorophenyl)thiazol-2-amines required for DNase I inhibition and proved the absence of structurally similar molecules in available databases. Compounds 18-20 have been shown as very potent 5-LO inhibitors with nanomolar IC50 values obtained in cell-free assay, with compound 20 being the most potent (IC50 = 50 nM). Molecular docking and molecular dynamics simulations into the binding site of 5-LO enzyme allowed us to clarify the binding mode of these dual DNase I/5-LO inhibitors. It was shown that compounds 18-20 uniquely show interactions with histidine residues in the catalytic site of DNase I and 5-LO enzyme. In the absence of potent organic DNase I inhibitors, compounds 18-20 represent a good starting point for the development of novel Alzheimer's therapeutics based on dual 5-LO and DNase I inhibition, which also have anti-inflammatory properties.


Asunto(s)
Aminas/uso terapéutico , Antiinflamatorios/uso terapéutico , Desoxirribonucleasa I/antagonistas & inhibidores , Inhibidores de la Lipooxigenasa/uso terapéutico , Enfermedades Neurodegenerativas/tratamiento farmacológico , Tiazoles/química , Aminas/química , Aminas/farmacología , Antiinflamatorios/farmacocinética , Antiinflamatorios/farmacología , Humanos , Inhibidores de la Lipooxigenasa/química , Inhibidores de la Lipooxigenasa/farmacocinética , Inhibidores de la Lipooxigenasa/farmacología , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Relación Estructura-Actividad Cuantitativa
17.
Bioorg Med Chem ; 27(20): 115079, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31500943

RESUMEN

Lantibiotics are antimicrobial peptides produced by Gram-positive bacteria and active in the nanomolar range. Nisin is the most intensely studied and used lantibiotic, with applications as food preservative and recognized potential for clinical usage. However, different bacteria that are pathogenic for humans and do not produce nisin, including Streptococcus agalactiae, show an innate resistance that has been related to the nisin resistance protein (NSR), a membrane-associated protease. Here, we report the first-in-class small-molecule inhibitors of SaNSR identified by virtual screening based on a previously derived structural model of the nisin/NSR complex. The inhibitors belong to three different chemotypes, of which the halogenated phenyl-urea derivative NPG9 is the most potent one. Co-administration of NPG9 with nisin yields increased potency compared to nisin alone in SaNSR-expressing bacteria. The binding mode of NPG9, predicted with molecular docking and validated by extensive molecular dynamics simulations, confirms a structure-activity relationship derived from the in vivo data. Saturation transfer difference-NMR experiments demonstrate direct binding of NPG9 to SaNSR and agree with the predicted binding mode. Our results demonstrate the potential to overcome SaNSR-related lantibiotic resistance by small molecules.


Asunto(s)
Antibacterianos/farmacología , Proteínas Bacterianas/antagonistas & inhibidores , Farmacorresistencia Bacteriana/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Streptococcus agalactiae/efectos de los fármacos , Antibacterianos/síntesis química , Antibacterianos/química , Proteínas Bacterianas/metabolismo , Relación Dosis-Respuesta a Droga , Humanos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/química , Streptococcus agalactiae/química , Relación Estructura-Actividad
18.
Eur J Med Chem ; 148: 487-497, 2018 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-29477889

RESUMEN

The design of multi-targeting ligands was developed in the last decades as an innovative therapeutic concept for Parkinson's disease (PD) and other neurodegenerative disorders. As the monoamine oxidase B (MAO B) and the histamine H3 receptor (H3R) are promising targets for dopaminergic regulation, we synthetized dual-targeting ligands (DTLs) as non-dopaminergic receptor approach for the treatment of PD. Three series of compounds were developed by attaching the H3R pharmacophore to indanone-related MAO B motifs, leading to development of MAO B/H3R DTLs. Among synthesized indanone DTLs, compounds bearing the 2-benzylidene-1-indanone core structure showed MAO B preferring inhibition capabilities along with nanomolar hH3R affinity. Substitution of C5 and C6 position of the 2-benzylidene-1-indanones with lipophilic substituents revealed three promising candidates exhibiting inhibitory potencies for MAO B with IC50 values ranging from 1931 nM to 276 nM and high affinities at hH3R (Ki < 50 nM). Compound 3f ((E)-5-((4-bromobenzyl)oxy)-2-(4-(3-(piperidin-1-yl)propoxy)benzylidene)-2,3-dihydro-1H-inden-1-one, MAO B IC50 = 276 nM, hH3R Ki = 6.5 nM) showed highest preference for MAO B over MAO A (SI > 36). Interestingly, IC50 determinations after preincubation of enzyme and DTLs revealed also nanomolar MAO B potency for 3e (MAO B IC50 = 232 nM), a structural isomer of 3f, and 3d (MAO B IC50 = 541 nM), suggesting time-dependent inhibition modes. Reversibility of inhibition for all three compounds were confirmed by dilution studies in excess of substrate. Thus, indanone-substituted derivatives are promising lead structures for the design of MAO B/hH3R DTLs as novel therapeutic approach of PD therapy.


Asunto(s)
Indanos/química , Monoaminooxidasa/efectos de los fármacos , Enfermedad de Parkinson/tratamiento farmacológico , Receptores Histamínicos H3/efectos de los fármacos , Inhibidores Enzimáticos , Humanos , Indanos/farmacología , Concentración 50 Inhibidora , Ligandos , Relación Estructura-Actividad
19.
JCI Insight ; 2(10)2017 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-28515365

RESUMEN

Allogeneic hematopoietic cell transplantation (allo-HCT) is an effective immunotherapy for a variety of hematologic malignances, yet its efficacy is impeded by the development of graft-versus-host disease (GVHD). GVHD is characterized by activation, expansion, cytokine production, and migration of alloreactive donor T cells. Hence, strategies to limit GVHD are highly desirable. Ceramides are known to contribute to inflammation and autoimmunity. However, their involvement in T-cell responses to alloantigens is undefined. In the current study, we specifically characterized the role of ceramide synthase 6 (CerS6) after allo-HCT using genetic and pharmacologic approaches. We found that CerS6 was required for optimal T cell activation, proliferation, and cytokine production in response to alloantigen and for subsequent induction of GVHD. However, CerS6 was partially dispensable for the T cell-mediated antileukemia effect. At the molecular level, CerS6 was required for efficient TCR signal transduction, including tyrosine phosphorylation, ZAP-70 activation, and PKCθ/TCR colocalization. Impaired generation of C16-ceramide was responsible for diminished allogeneic T cell responses. Furthermore, targeting CerS6 using a specific inhibitor significantly reduced T cell activation in mouse and human T cells in vitro. Our study provides a rationale for targeting CerS6 to control GVHD, which would enhance the efficacy of allo-HCT as an immunotherapy for hematologic malignancies in the clinic.

20.
Neuropharmacology ; 105: 341-350, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26808312

RESUMEN

The immunomodulatory drug FTY720 is presently approved for the treatment of relapsing-remitting multiple sclerosis. It is a prodrug that requires activation by sphingosine kinase 2 (SK-2) to induce T cell homing to secondary lymphoid tissue. In this study, we have investigated the role of SK-2 in experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice. We show that SK-2 deficiency reduced clinical symptoms of EAE. Furthermore, in SK-2-deficient mice, the protective effect of FTY720 on EAE was abolished, while the non-prodrug FTY720-derivative ST-968 was still fully active. Protection was paralleled by reduced numbers of T-lymphocytes in blood and a reduced blood-brain-barrier leakage. This correlated with reduced mRNA expression of ICAM-1, VCAM-1, but enhanced expression of PECAM-1. A similar regulation of permeability and of PECAM-1 was seen in primary cultures of isolated mouse brain vascular endothelial cells and in a human immortalized cell line upon SK-2 knockdown. In summary, these data demonstrated that deletion of SK-2 exerts a protective effect on the pathogenesis of EAE in C57BL/6 mice and that SK-2 is essential for the protective effect of FTY720 but not of ST-968. Thus, ST-968 is a promising novel immunomodulatory compound that may be a valuable alternative to FTY720 under conditions where SK-2 activity is limited.


Asunto(s)
Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Encefalomielitis Autoinmune Experimental/enzimología , Clorhidrato de Fingolimod/uso terapéutico , Factores Inmunológicos/uso terapéutico , Oxazoles/uso terapéutico , Fosfotransferasas (Aceptor de Grupo Alcohol)/deficiencia , Animales , Barrera Hematoencefálica/efectos de los fármacos , Encefalomielitis Autoinmune Experimental/genética , Células Endoteliales/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Molécula 1 de Adhesión Intercelular/biosíntesis , Ratones , Ratones Endogámicos C57BL , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Cultivo Primario de Células , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Linfocitos T/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...